Journal of Inorganic Materials ›› 2019, Vol. 34 ›› Issue (7): 748-754.DOI: 10.15541/jim20180443
Previous Articles Next Articles
GUO Yu1,2,PENG Tong-Hua1,2(),LIU Chun-Jun1,YANG Zhan-Wei1,CAI Zhen-Li1
Received:
2018-09-20
Revised:
2018-11-13
Published:
2019-07-20
Online:
2019-06-26
Supported by:
CLC Number:
GUO Yu, PENG Tong-Hua, LIU Chun-Jun, YANG Zhan-Wei, CAI Zhen-Li. Correlation between Stacking Faults in Epitaxial Layers of 4H-SiC and Defects in 4H-SiC Substrate[J]. Journal of Inorganic Materials, 2019, 34(7): 748-754.
Fig. 2 Originations and propagations of SF I and SF II<11
No. | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Moving distance of BPD lines, D/μm | 33 | 57 | 44 | 94 | 60 | 39 |
Removing thickness, H/μm | 2.3 | 4 | 3.1 | 6.6 | 4.2 | 2.7 |
Table 1 Relationship of moving distance D of BPD lines and removing thickness H of epitaxial layers in Fig. 2
No. | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Moving distance of BPD lines, D/μm | 33 | 57 | 44 | 94 | 60 | 39 |
Removing thickness, H/μm | 2.3 | 4 | 3.1 | 6.6 | 4.2 | 2.7 |
Test position | Substrate | Epitaxial layers |
---|---|---|
N concentration | 8×1012 | <1010 |
Table 2 Nitrogen concentration in substrate and epitaxial layers tested by SIMS
Test position | Substrate | Epitaxial layers |
---|---|---|
N concentration | 8×1012 | <1010 |
Fig. 4 Originations and propagations of SF III<11
Fig. 5 Originations and propagations of SF IV<11
No. | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Moving distance of BPD lines, D/μm | 102 | 53 | 23 | 61 |
Removing thickness, H/μm | 7.1 | 3.7 | 1.6 | 4.3 |
Table 3 Relationship of the moving distance D of BPD lines and the removing thickness H of epitaxial layers in Fig. 3
No. | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Moving distance of BPD lines, D/μm | 102 | 53 | 23 | 61 |
Removing thickness, H/μm | 7.1 | 3.7 | 1.6 | 4.3 |
No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
Moving distance of BPD lines, D/μm | 34 | - | 36 | - | 50 | - | - | - |
Removing thickness, H/μm | 2.4 | 3.8 | 2.5 | 12.9 | 3.5 | 2.9 | - | - |
With triangle defects, W/μm | 85 | 51 | 85 | 49.0 | 85 | 35 | 85 | 35 |
Bottom lengths of triangle defects, L/μm | 105 | 63 | 90 | 52 | 60 | 25 | 110 | 45 |
Table 4 Relationship of the moving distance D of BPD lines, the removing thickness H of epitaxial layers and width of trianagle defects W with bottom lengths of triangle defects in Fig. 3
No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
Moving distance of BPD lines, D/μm | 34 | - | 36 | - | 50 | - | - | - |
Removing thickness, H/μm | 2.4 | 3.8 | 2.5 | 12.9 | 3.5 | 2.9 | - | - |
With triangle defects, W/μm | 85 | 51 | 85 | 49.0 | 85 | 35 | 85 | 35 |
Bottom lengths of triangle defects, L/μm | 105 | 63 | 90 | 52 | 60 | 25 | 110 | 45 |
[1] | PENG T H, LIU C J, WANG B , et al. Progress in growth and physical properties of wide band gap semiconductor silicon carbide single crystals. Journal of Synthetic Crystal, 2012,S1:234-241. |
[2] |
PENG T H, YANG H, JIAN J K , et al. Factors affecting the formation of misoriented domains in 6H-SiC single crystals grown by PVT method.[J]. Cryst. Res. Technol., 2009,44(4):357-362.
DOI URL |
[3] | CHANG S H, LIU X C, HUANG W , et al. Preparation and properties of lateral contact structure SiC photoconductive semiconductor switches. Journal of Inorganic Materials, 2012,27(10):1058-1062. |
[4] |
WANG B, PENG T H, LIANG J K , et al. Characterizations and formation mechanism of a new type of defect related to nitrogen doping in SiC crystals. Appl. Phys.A, 2014,117(3):1563-1569.
DOI URL |
[5] |
LIU C J, CHEN X L, PENG T H , et al. Step flow and polytype transformation in growth of 4H-SiC crystals. J. Cryst. Growth, 2014,394:126-131.
DOI URL |
[6] |
SUN W, SONG Y T, LIU C J , et al. Basal plane dislocation- threading edge dislocation complex dislocations in 6H-SiC single crystals. Mater.Express, 2015,5(1):63-67.
DOI URL |
[7] |
LIU C J, PENG T H, WANG S C , et al. Formation mechanism of type 2 micropipe defects in 4H-SiC crystals. CrystEngComm, 2013,15(7):1307-1313.
DOI URL |
[8] |
ZHAO N, LIU C J, WANG B , et al. Stacking faults in 4H-SiC single crystal. Journal of Inorganic Materials, 2018,33(5):540-544.
DOI URL |
[9] |
LIU K X, STAHLBUSH R E, TWIGG M E , et al. Photoluminescence and electroluminescence imaging of carrot defect in 4H-SiC epitaxy. Journal of Electronic Materials, 2007,36(4):297-306.
DOI URL |
[10] | ZHANG X, HA S Y, BENAMARA S , et al. Structure of carrot defects in 4H-SiC epilayers. Materials Science Forum, 2006, 527-529:327-332. |
[11] |
MIAO M S, WALTER R L . Stacking faults and 3C quantum wells in hexagonal SiC polytypes. Mater.Sci.Forum, 2006, 527-529:351-354.
DOI URL |
[12] |
WANG Y, CHERT L, MILDAOV M K , et al. Characterization of stacking fault induced behavior in 4H-SiC p-i-n diodes.Mater. Sci.Forum, 2006, 527-529:363-366.
DOI URL |
[13] |
HIDEYUKI U, KEISUKE F, MASANHIKO I , et al. Analysis and reduction of stacking faults in fast epitaxial growth. Materials Science Forum, 2016 858:173-176.
DOI URL |
[14] | RADU H, STEFAN G S, DENIS E T , et al. Identification of stacking faults in silicon carbide by polarization-resolved second harmonic generation microscopy. Scientific Reports, 2017, 7(1): 4870-1-9. |
[15] | HIDEKAZU Y . Assessment of stacking faults in silicon carbide crystals. Sensors and Materials, 2013,25(3):177-187. |
[16] |
HASSAN J, HENRY A, IVANOV I G , et al. In-grown stacking faults in 4H-SiC epilayers grown on off-cut substrates. Journal of Applied Physics, 2009,105(12):123513.
DOI URL |
[17] |
ZHOU R W, LIU X C, GUO H J , et al. Study of triangle-shaped defects on nearly on-axis 4H-SiC substrates. Materials Science Forum, 2016,858:225-228.
DOI URL |
[18] |
HASSAN J, BERGMAN J P . Single Shockley stacking faults in as-grown 4H-SiC epilayers. Materials Science Forum, 2010, 645-648:327-330.
DOI URL |
[19] |
LIJIMA A, KAMATA I , TSUCHIDA, H, et al. Correlation between shapes of Shockley stacking faults and structures of basal plane dislocations in 4H-SiC epilayers. Philosophical Magazine, 2017,97(30):2736-2752.
DOI URL |
[20] |
STAHLBUSH R E, MYERS-WARD R L, VANMIL B L , et al. A pictorial tracking of basal plane dislocations in SiC epitaxy. Materials Science Forum, 2010, 645-648:271-276.
DOI URL |
[21] | OKOJIE R S, HUANG X, DUDLEY M , et al. Process-induced deformations and stacking faults in 4H-SiC. MRS Proceedings, 2011,911:B07-02. |
[22] |
LIU K X, STAHLBUSH R E, TWIGG M E , et al. Photoluminescence and electroluminescence imaging of carrot defect in 4H-SiC epitaxy. Journal of Electronic Materials, 2007,36(4):297-306.
DOI URL |
[23] | YUTARO M, SHUHEI Y, YASUTO H , et al. Photoluminescence study of oxidation-induced stacking faults in 4H-SiC epilayers. Materials Science Forum Vols., 2015,5(12):327-330. |
[24] | LI Z Y, LIU L T, DONG X , et al. Defects in homogeneous epitaxial layers of 4H-SiC. Equipment for Electronic Products Manufacturing, 2005,11(130):62-64. |
[25] |
MIAO M S, WALTER R L . Stacking faults and 3C quantum wells in hexagonal SiC polytypes. Mater. Sci. Forum, 2006, 527-529:351-354.
DOI URL |
[26] |
KATSUNO M, NAKABAYASHI M, FUJIMOTO T , et al. Stacking fault formation in highly nitrogen-doped 4H-SiC substrates with different surface preparation conditions. Mater.Sci.Forum, 2008, 600-603:341-344.
DOI URL |
[27] |
KUHR T A, LIU J Q, CHUNG H J , et al. Spontaneous formation of stacking faults in highly doped 4H-SiC during annealing.[J]. Appl. Phys., 2002,92(10):5863-5871.
DOI URL |
[28] | GALECKAS A, LINNROS J, PIROUZ P , et al. Recombination- induced stacking faults: evidence for a general mechanism in hexagonal SiC. Phys. Rev. Lett., 2006, 96(2): 025502-1-4. |
[29] |
OHNO T, YAMAGUCHI H, KURODA S , et al. Direct observation of dislocations propagated from 4H-SiC substrate to epitaxial layer by X-ray topograghy. Joumal of Crystal Growth, 2004,260:209-216.
DOI URL |
[30] |
HASSAN J, HENRY A, MCNALLY P J , et al. Characterization of the carrot defect in 4H-SiC epitaxial layers. Journal of Crystal Growth, 2010,312(11):1828-1837.
DOI URL |
[1] | QUAN Wenxin, YU Yiping, FANG Bing, LI Wei, WANG Song. Oxidation Behavior and Meso-macro Model of Tubular C/SiC Composites in High-temperature Environment [J]. Journal of Inorganic Materials, 2024, 39(8): 920-928. |
[2] | TAN Min, CHEN Xiaowu, YANG Jinshan, ZHANG Xiangyu, KAN Yanmei, ZHOU Haijun, XUE Yudong, DONG Shaoming. Microstructure and Oxidation Behavior of ZrB2-SiC Ceramics Fabricated by Tape Casting and Reactive Melt Infiltration [J]. Journal of Inorganic Materials, 2024, 39(8): 955-964. |
[3] | WANG Kanglong, YIN Jie, CHEN Xiao, WANG Li, LIU Xuejian, HUANG Zhengren. Effect of Particle Grading on Properties of Silicon Carbide Ceramics Prepared by Selective Laser Sintering Printing Combined with Solid-phase Sintering at Atmospheric Pressure [J]. Journal of Inorganic Materials, 2024, 39(7): 754-760. |
[4] | JIANG Lingyi, PANG Shengyang, YANG Chao, ZHANG Yue, HU Chenglong, TANG Sufang. Preparation and Oxidation Behaviors of C/SiC-BN Composites [J]. Journal of Inorganic Materials, 2024, 39(7): 779-786. |
[5] | WU Xiaochen, ZHENG Ruixiao, LI Lu, MA Haolin, ZHAO Peihang, MA Chaoli. Research Progress on In-situ Monitoring of Damage Behavior of SiCf/SiC Ceramic Matrix Composites at High Temperature Environments [J]. Journal of Inorganic Materials, 2024, 39(6): 609-622. |
[6] | SU Yi, SHI Yangfan, JIA Chenglan, CHI Pengtao, GAO Yang, MA Qingsong, CHEN Sian. Microstructure and Properties of C/HfC-SiC Composites Prepared by Slurry Impregnation Assisted Precursor Infiltration Pyrolysis [J]. Journal of Inorganic Materials, 2024, 39(6): 726-732. |
[7] | ZHENG Bin, KANG Kai, ZHANG Qing, YE Fang, XIE Jing, JIA Yan, SUN Guodong, CHENG Laifei. Preparation and Thermal Stability of Ti3SiC2 Ceramics by Polymer Derived Ceramics Method [J]. Journal of Inorganic Materials, 2024, 39(6): 733-740. |
[8] | HE Zongbei, CHEN Fang, LIU Dianguang, LI Tongye, ZENG Qiang. Sintering Behavior of Simulating Core FCM Fuel via Hot Oscillatory Pressing [J]. Journal of Inorganic Materials, 2024, 39(5): 501-508. |
[9] | GUAN Haoyang, ZHANG Li, JING Kaikai, SHI Weigang, WANG Jing, LI Mei, LIU Yongsheng, ZHANG Chengyu. Interfacial Mechanical Properties of the Domestic 3rd Generation 2.5D SiCf/SiC Composite [J]. Journal of Inorganic Materials, 2024, 39(3): 259-266. |
[10] | XUE Dingxi, YI Bingyao, LI Guojun, MA Shuai, LIU Keqin. Numerical Simulation of Thermal Stress in Solid Oxide Fuel Cells with Functional Gradient Anode [J]. Journal of Inorganic Materials, 2024, 39(11): 1189-1196. |
[11] | WU Jun, XU Peifei, JING Rui, ZHANG Dahai, FEI Qingguo. Experimental Study on Low-velocity Impact and Residual Strength of SiC/SiC Composite Laminates [J]. Journal of Inorganic Materials, 2024, 39(1): 51-60. |
[12] | SHI Weigang, ZHANG Chao, LI Mei, WANG Jing, ZHANG Chengyu. 2D-SiCf/SiC Interlaminar Mode I Fracture Testing and Characterization [J]. Journal of Inorganic Materials, 2024, 39(1): 45-50. |
[13] | WU Xiaowei, ZHANG Han, ZENG Biao, MING Chen, SUN Yiyang. Comparison of Hybrid Functionals HSE and PBE0 in Calculating the Defect Properties of CsPbI3 [J]. Journal of Inorganic Materials, 2023, 38(9): 1110-1116. |
[14] | WU Shuang, GOU Yanzi, WANG Yongshou, SONG Quzhi, ZHANG Qingyu, WANG Yingde. Effect of Heat Treatment on Composition, Microstructure and Mechanical Property of Domestic KD-SA SiC Fibers [J]. Journal of Inorganic Materials, 2023, 38(5): 569-576. |
[15] | ZHANG Shuo, FU Qiangang, ZHANG Pei, FEI Jie, LI Wei. Influence of High Temperature Treatment of C/C Porous Preform on Friction and Wear Behavior of C/C-SiC Composites [J]. Journal of Inorganic Materials, 2023, 38(5): 561-568. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 1823
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 1583
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||