Journal of Inorganic Materials ›› 2019, Vol. 34 ›› Issue (5): 546-552.DOI: 10.15541/jim20180336
Previous Articles Next Articles
Guo-Hao XU1,Jin-Peng YU1,2,Hua-Sheng XU1,2,Chun-Cheng LI1,2,Jin-Hua HUANG1,Peng-Fei WANG1,2()
Received:
2018-07-23
Revised:
2018-09-24
Published:
2019-05-20
Online:
2019-05-14
Supported by:
CLC Number:
Guo-Hao XU, Jin-Peng YU, Hua-Sheng XU, Chun-Cheng LI, Jin-Hua HUANG, Peng-Fei WANG. Catalystic Performance of HZSM-5 Zeolite Treated by CH3COONa[J]. Journal of Inorganic Materials, 2019, 34(5): 546-552.
Sample | Relative crystallinity/% | n(SiO2) /n(Al2O3) |
---|---|---|
HZSM-5(0) | 100 | 100 |
HZSM-5(CH3COONa, 2.0) | 99 | 94 |
HZSM-5(CH3COONa, 4.0) | 97 | 90 |
HZSM-5(CH3COONa, 6.0) | 85 | 82 |
HZSM-5(Na2CO3, 2.0) | 62 | 74 |
HZSM-5(NaOH, 1.0) | 24 | 63 |
Table 1 Relative crystallinity and n(SiO2)/n(Al2O3) of HZSM-5 zeolites before and after alkali treatment
Sample | Relative crystallinity/% | n(SiO2) /n(Al2O3) |
---|---|---|
HZSM-5(0) | 100 | 100 |
HZSM-5(CH3COONa, 2.0) | 99 | 94 |
HZSM-5(CH3COONa, 4.0) | 97 | 90 |
HZSM-5(CH3COONa, 6.0) | 85 | 82 |
HZSM-5(Na2CO3, 2.0) | 62 | 74 |
HZSM-5(NaOH, 1.0) | 24 | 63 |
Sample | ABET/(m2·g-1) | Aext/(m2·g-1) | vmicro/(cm3·g-1) | vmeso/(cm3·g-1) | daver/nm |
---|---|---|---|---|---|
HZSM-5(0) | 357.92 | 29.98 | 0.17 | 0.04 | 1.52 |
HZSM-5(CH3COONa, 2.0) | 366.64 | 74.43 | 0.16 | 0.07 | 2.35 |
HZSM-5(CH3COONa, 4.0) | 378.69 | 103.83 | 0.16 | 0.11 | 2.93 |
HZSM-5(CH3COONa, 6.0) | 375.72 | 93.98 | 0.15 | 0.14 | 3.26 |
HZSM-5(Na2CO3, 2.0) | 372.64 | 85.48 | 0.13 | 0.17 | 3.51 |
HZSM-5(NaOH, 1.0) | 360.23 | 66.25 | 0.08 | 0.28 | 4.67 |
Table 2 Effect of alkaline treatment on structure of HZSM-5 zeolites
Sample | ABET/(m2·g-1) | Aext/(m2·g-1) | vmicro/(cm3·g-1) | vmeso/(cm3·g-1) | daver/nm |
---|---|---|---|---|---|
HZSM-5(0) | 357.92 | 29.98 | 0.17 | 0.04 | 1.52 |
HZSM-5(CH3COONa, 2.0) | 366.64 | 74.43 | 0.16 | 0.07 | 2.35 |
HZSM-5(CH3COONa, 4.0) | 378.69 | 103.83 | 0.16 | 0.11 | 2.93 |
HZSM-5(CH3COONa, 6.0) | 375.72 | 93.98 | 0.15 | 0.14 | 3.26 |
HZSM-5(Na2CO3, 2.0) | 372.64 | 85.48 | 0.13 | 0.17 | 3.51 |
HZSM-5(NaOH, 1.0) | 360.23 | 66.25 | 0.08 | 0.28 | 4.67 |
Acid strength | Relative acid amount/% | |||||
---|---|---|---|---|---|---|
HZSM-5(0) | HZSM-5 (CH3COONa, 2.0) | HZSM-5 (CH3COONa, 4.0) | HZSM-5 (CH3COONa, 6.0) | HZSM-5 (Na2CO3, 2.0) | HZSM-5 (NaOH, 1.0) | |
Strong | 100 | 98.17 | 90.83 | 102.25 | 103.47 | 108.15 |
Weak | 100 | 98.14 | 90.06 | 101.86 | 103.18 | 107.28 |
Table 3 Relative acid amount of HZSM-5 zeolites before and after alkaline treatment
Acid strength | Relative acid amount/% | |||||
---|---|---|---|---|---|---|
HZSM-5(0) | HZSM-5 (CH3COONa, 2.0) | HZSM-5 (CH3COONa, 4.0) | HZSM-5 (CH3COONa, 6.0) | HZSM-5 (Na2CO3, 2.0) | HZSM-5 (NaOH, 1.0) | |
Strong | 100 | 98.17 | 90.83 | 102.25 | 103.47 | 108.15 |
Weak | 100 | 98.14 | 90.06 | 101.86 | 103.18 | 107.28 |
Catalyst | Hydrogen chemisorption/ (mL·g-1 Pt) | Bare fraction of metallic Pt/% |
---|---|---|
Pt/HZSM-5(0) | 15.0 | 34.8 |
Pt/HZSM-5(CH3COONa, 2.0) | 21.7 | 50.4 |
Pt/HZSM-5(CH3COONa, 4.0) | 22.8 | 52.9 |
Pt/HZSM-5(CH3COONa, 6.0) | 22.2 | 51.6 |
Pt/HZSM-5(Na2CO3, 2.0) | 19.5 | 45.2 |
Pt/HZSM-5(NaOH, 1.0) | 16.6 | 38.6 |
Table 4 Analysis of hydrogen adsorption amount and Pt dispersion of catalysts before and after alkaline treatment
Catalyst | Hydrogen chemisorption/ (mL·g-1 Pt) | Bare fraction of metallic Pt/% |
---|---|---|
Pt/HZSM-5(0) | 15.0 | 34.8 |
Pt/HZSM-5(CH3COONa, 2.0) | 21.7 | 50.4 |
Pt/HZSM-5(CH3COONa, 4.0) | 22.8 | 52.9 |
Pt/HZSM-5(CH3COONa, 6.0) | 22.2 | 51.6 |
Pt/HZSM-5(Na2CO3, 2.0) | 19.5 | 45.2 |
Pt/HZSM-5(NaOH, 1.0) | 16.6 | 38.6 |
[1] |
ZHAO DAN, YUAN MEI-HUA, ZHANG YAO-YUAN , et al. Incorporation of Cr in ZSM-5 zeolite framework as bifunctional catalysts for n-butane catalytic cracking. CIESC Journal, 2016,67(8):3400-3407.
DOI URL |
[2] |
ZHANG YI-WEI, ZHOU YU-MING, SHI JUN-JUN , et al. Comparative study of bimetallic Pt-Sn catalysts supported on different supports for propane dehydrogenation. Journal of Molecular Catalysis A: Chemical, 2014,381:138-147.
DOI URL |
[3] |
KUMAR M SANTHOSH, CHEN DE, HOLMEN ANDERS , et al. Dehydrogenation of propane over Pt-SBA-15 and Pt-Sn-SBA-15: effect of Sn on the dispersion of Pt and catalytic behavior. Catalysis Today, 2009,142(1/2):17-23.
DOI URL |
[4] |
QIU AN-DING, LI EN-XIA, FAN YI-NING . Effect on catalytic performance of PtSn/ZSM-5 catalyst for propane dehydrogenation. Chinese Journal of Catalysis, 2007,28(11):970-974.
DOI URL |
[5] | LI JIAN-HUA, YANG DONG-HUA, LÜ AI-NING , et al. Synthesis and characterization of ZSM-5/EU-1 composite zeolite with core-shell structure by one step. Journal of Inorganic Materials, 2016,31(5):492-498. |
[6] |
ZHANG YI-WEI, ZHOU YU-MING, TANG MENG-HAN , et al. Effect of La calcination temperature on catalytic performance of PtSnNaLa/ZSM-5 catalyst for propane dehydrogenation. Chemical Engineering Journal, 2012, 181-182:530-537.
DOI URL |
[7] |
SHEINTUCH M, LIRON O, RICCA A , et al. Propane dehydrogenation kinetics on supported Pt catalyst. Applied Catalysis A: General, 2016,516:17-29.
DOI URL |
[8] |
MASARU OGURA, SHIN-YA SHINOMIYA, JUNKO TATENO , et al. Alkali-treatment technique-new method for modification of structural and acid-catalytic properties of ZSM-5 zeolites. Applied Catalysis A:General, 2001,219:33-43.
DOI URL |
[9] | FATHI S, SOHRABI M, FALAMAKI C . Improvement of HZSM-5 performance by alkaline treatments: comparative catalytic study in the MTG reactions. Fuel, 2014,116:529-537. |
[10] | SHI GANG, LIN XIU-YING, FAN YU , et al. Desilication modification of ZSM-5 zeolite and its catalytic properties in hydro-upgrading. Journal of Fuel Chemistry and Technology, 2013,41(5):589-560. |
[11] | LIU DONG-MEI, ZHAI YU-CHUN, MA JIAN , et al. Preparation of micro-mesoporous ZSM-5 modified by Na2CO3 and its catalytic performance for sulfur etherification. Acta Petrolei Sinica (Petroleum Processing Section), 2015,31(1):38-44. |
[12] |
GAO XIONG-HOU, TANG ZHI-CHENG, LU GONG-XUAN , et al. Butene catalytic cracking to ethylene and propylene on mesoporous ZSM-5 by desilication. Solid State Sciences, 2010,12:1278-1282.
DOI URL |
[13] |
OGURA M, SHINOMIYA S . Alkali-treatment technique-new method for modification of structural and acid-catalytic properties of ZSM-5 zeolites. Applied Catalysis A: General, 2001,219(3):33-43.
DOI URL |
[14] |
HAO CHEN, HAO CHENG, FANG ZHOU , et al. Catalytic fast pyrolysis of rice straw to aromatic compounds over hierarchical HZSM-5 produced by alkali treatment and metal-modification. Journal of Analytical and Applied Pyrolysis, 2018,131:76-84.
DOI URL |
[15] |
ZHANG YI-WEI, ZHOU YU-MING, QIU AN-DING , et al. Effect of Na addition on catalytic performance of PtSn/ZSM-5 catalyst for propane dehydrogenation. Acta Phys.-Chim. Sin., 2006,22(6):672-678.
DOI URL |
[16] |
SUZUKI TETSUO, OKUHARA TOSHIO . Change in pore structure of MFI zeolite by treatment with NaOH aqueous solution. Microporous and Mesoporous Materials, 2001,43(1):83-89.
DOI URL |
[17] |
SONG YUE-QIN, FENG YAN-LONG, LIU FENG , et al. Effect of variations in pore structure and acidity of alkali treated ZSM-5 on the isomerization performance. Journal of Molecular Catalysis A: Chemical, 2009,310(1/2):130-137.
DOI URL |
[1] | WANG You-He, WANG Xiao-Dong, XU Jing-Wei, SUN Hong-Man, WU Cheng-Cheng, YAN Zi-Feng, JI Sheng-Fu. Hierarchical ZSM-5 Zeolite: Preparation by Sequential Desilication-dealumination and Catalytic Performance in Methanol to Gasoline Reaction [J]. Journal of Inorganic Materials, 2018, 33(11): 1193-1200. |
[2] | XUE Wei-Chang,ZHENG Xue-Bin,LIU Xuan-Yong,DING Chuan-Xian. Osseointegration of Plasma-sprayed Titanium Coating after Alkali Modification [J]. Journal of Inorganic Materials, 2005, 20(5): 1275-1280. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||