Journal of Inorganic Materials ›› 2019, Vol. 34 ›› Issue (1): 96-102.DOI: 10.15541/jim20180172
Special Issue: MAX相和MXene材料; 光伏材料
• RESEARCH PAPER • Previous Articles Next Articles
XIONG Hao1, ZHANG Bo-Xin1, JIA Wei2, ZHANG Qing-Hong1, XIE Hua-Qing3
Received:
2018-04-19
Revised:
2018-08-01
Published:
2019-01-21
Online:
2018-12-17
About author:
XIONG Hao. E-mail: xhqmlwhj@126.com
CLC Number:
XIONG Hao, ZHANG Bo-Xin, JIA Wei, ZHANG Qing-Hong, XIE Hua-Qing. Polymer PVP Additive for Improving Stability of Perovskite Solar Cells[J]. Journal of Inorganic Materials, 2019, 34(1): 96-102.
Fig. 1 Surface SEM images of PbI2 films on the glass with or without polymer modification (a) Without PVP; (b) 0.2wt% PVP; (c) 0.4wt% PVP; (d) 0.6wt% PVP; (e) 0.8wt% PVP
Fig. 2 Surface SEM images of perovskite films with various concentration of PVP (a) Without PVP; (b) 0.2wt% PVP; (c) 0.4wt% PVP; (d) 0.6wt% PVP; (e) 0.8wt% PVP
Fig. 5 XRD patterns of fresh perovskite films doped with PVP of various quantities; The optical photos from bottom to top in the inserted are 0, 0.2wt%, 0.4wt%, 0.6wt%, 0.8wt% PVP (PbI2 on the left, perovskite on the right)
Fig. 6 XRD patterns of CH3NH3PbI3 doped with PVP of various quantities after three weeks in the air; The optical photos from bottom to top in the inserted are 0, 0.2wt%, 0.4wt%, 0.6wt%, 0.8wt% PVP, respectively (PbI2 on the left, perovskite on the right)
Sample | Voc/V | Jsc/(mA·cm-2) | FF/% | PCE/% |
---|---|---|---|---|
Without PVP | 0.95 | 16.17 | 39.40 | 6.09 |
0.2wt% PVP | 1.00 | 19.14 | 46.10 | 8.86 |
0.4wt% PVP | 1.04 | 19.60 | 64.00 | 13.07 |
0.6wt% PVP | 1.05 | 17.39 | 67.77 | 12.34 |
0.8wt% PVP | 1.04 | 14.83 | 67.38 | 10.42 |
Table 1 The parameters of as-prepared perovskite solar cells doped with various concentration of PVP
Sample | Voc/V | Jsc/(mA·cm-2) | FF/% | PCE/% |
---|---|---|---|---|
Without PVP | 0.95 | 16.17 | 39.40 | 6.09 |
0.2wt% PVP | 1.00 | 19.14 | 46.10 | 8.86 |
0.4wt% PVP | 1.04 | 19.60 | 64.00 | 13.07 |
0.6wt% PVP | 1.05 | 17.39 | 67.77 | 12.34 |
0.8wt% PVP | 1.04 | 14.83 | 67.38 | 10.42 |
Sample | Voc/V | Jsc/(mA·cm-2) | FF/% | PCE/% |
---|---|---|---|---|
Without PVP | 1.09 | 12.05 | 31.64 | 4.17 |
0.2wt% PVP | 0.78 | 16.75 | 48.36 | 6.33 |
0.4wt% PVP | 1.04 | 21.05 | 53.05 | 11.60 |
0.6wt% PVP | 0.99 | 21.44 | 47.12 | 10.02 |
0.8wt% PVP | 0.84 | 17.20 | 66.10 | 9.52 |
Table 2 The parameters of perovskite solar cells doped with various concentration of PVP after three days in the air
Sample | Voc/V | Jsc/(mA·cm-2) | FF/% | PCE/% |
---|---|---|---|---|
Without PVP | 1.09 | 12.05 | 31.64 | 4.17 |
0.2wt% PVP | 0.78 | 16.75 | 48.36 | 6.33 |
0.4wt% PVP | 1.04 | 21.05 | 53.05 | 11.60 |
0.6wt% PVP | 0.99 | 21.44 | 47.12 | 10.02 |
0.8wt% PVP | 0.84 | 17.20 | 66.10 | 9.52 |
Sample | Voc/V | Jsc/(mA·cm-2) | FF/% | PCE/% |
---|---|---|---|---|
Without PVP | 0.95 | 6.18 | 26.35 | 1.55 |
0.2wt% PVP | 1.03 | 15.53 | 29.75 | 4.75 |
0.4wt% PVP | 0.80 | 15.12 | 54.84 | 6.63 |
0.6wt% PVP | 0.82 | 10.88 | 68.36 | 6.11 |
0.8wt% PVP | 0.97 | 21.13 | 34.29 | 7.04 |
Table 3 The parameters of perovskite solar cells doped with various concentration of PVP after three weeks in the air
Sample | Voc/V | Jsc/(mA·cm-2) | FF/% | PCE/% |
---|---|---|---|---|
Without PVP | 0.95 | 6.18 | 26.35 | 1.55 |
0.2wt% PVP | 1.03 | 15.53 | 29.75 | 4.75 |
0.4wt% PVP | 0.80 | 15.12 | 54.84 | 6.63 |
0.6wt% PVP | 0.82 | 10.88 | 68.36 | 6.11 |
0.8wt% PVP | 0.97 | 21.13 | 34.29 | 7.04 |
[1] | HADADIAN M, CORREA-BAENA J P, GOHARSHADI E K, et al. Enhancing efficiency of perovskite solar cells via N-doped graphene: crystal modification and surface passivation. Adv. Mater., 2016, 28(39): 8681-8686. |
[2] | KIM H S, LEE C R, IM J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep., 2012, 2: 591-1-7. |
[3] | MENARD E, MEITL M A, SUN Y, et al.Micro and nanopatterning techniques for organic electronic and optoelectronic systems. Chem. Rev., 2007, 107(4): 1117-1160. |
[4] | JEON N J, NOH J H, KIM Y C, et al.Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nature Mater., 2014, 13(9): 897-903. |
[5] | GUO XIU-BIN, YU WEI, LI JING, et al.Improving microstructure and photoelectric performance of the perovskite material via mixed solvents. [J]. Inorg. Mater., 2017, 32(8): 870-876. |
[6] | CHANG C Y, CHU C Y, HUANG Y C, et al.Tuning perovskite morphology by polymer additive for high efficiency solar cell. ACS Appl. Mater. Interfaces, 2015, 7(8): 4955-4961. |
[7] | JEON N J, NOH J H, YANG W S, et al.Compositional engineering of perovskite materials for high-performance solar cells. Nature, 2015, 517(7535): 476-480. |
[8] | ZHOU Z, PANG S, LIU Z, et al.Interface engineering for high-performance perovskite hybrid solar cells. J. Mater. Chem. A, 2015, 3(38): 19205-19217. |
[9] | ZHANG MIN, WANG ZENG-HUA, ZHENG XIAO-JIA, et al.Structural effect of TiO2 on the performance of MAPbBr3 solar cells. [J]. Inorg. Mater., 2018, 33(2): 245-250. |
[10] | YANG G, TAO H, QIN P, et al.Recent progress in electron transport layers for efficient perovskite solar cells. J. Mater. Chem. A, 2016, 4(11): 3970-3990. |
[11] | MALI S S, HONG C K.Pin/nip type planar hybrid structure of highly efficient perovskite solar cells towards improved air stability: synthetic strategies and the role of p-type hole transport layer (HTL) and n-type electron transport layer (ETL) metal oxides. Nanoscale, 2016, 8(20): 10528-10540. |
[12] | JIANG WEN-LONG, ZHOU WEI, YING JI-FEI, et al.Thermal stable perovskite solar cells improved by ZnO/graphene oxide as electron transfer layers. [J]. Inorg. Mater., 2017, 32(1): 96-100. |
[13] | LIU CHANG, YUAN SHUAI, ZHANG HAI-LIANG, et al.p-type CuI films grown by iodination of copper and their application as hole transporting layers for inverted perovskite solar cells. [J]. Inorg. Mater., 2016, 31(4): 358-364. |
[14] | HUANG X, ZHU C, ZHANG S, et al.Porphyrin-dithienothiophene π-conjugated copolymers: synthesis and their applications in field- effect transistors and solar cells. Macromolecules, 2008, 41(19): 6895-6902. |
[15] | XIONG H, RUI Y, LI Y, et al.Hydrophobic coating over a CH3NH3PbI3 absorbing layer towards air stable perovskite solar cells. J. Mater. Chem. C, 2016, 4(28): 6848-6854. |
[16] | MÜLLER C, GLASER T, PLOGMYER M, et al. Water infiltration in methylammonium leadiodide perovskite: fast and inconspicuous. Chem. Mater., 2015, 27(22): 7835-7841. |
[17] | AMEEN S, RUB M A, KOSA S A, et al.Perovskite solar cells: influence of hole transporting materials on power conversion efficiency. ChemSusChem, 2016, 9(1): 10-27. |
[18] | LI B, LI Y, ZHENG C, et al.Advancements in the stability of perovskite solar cells: degradation mechanisms and improvement approaches. RSC Adv., 2016, 6(44): 38079-38091. |
[19] | ZHANG M, LYU M, YU H, et al.Stable and low-cost mesoscopic CH3NH3PbI2Br perovskite solar cells by using a thin poly (3-hexylthiophene) layer as a hole transporter. Chem-Eur J., 2015, 21(1): 434-439. |
[20] | CHAUDHARY B, KULKARNI A, JENA A K, et al.Poly (4-vinylpyridine)-based interfacial passivation to enhance voltage and moisture stability of lead halide perovskite solar cells. ChemSusChem, 2017, 10(11): 2473-2479. |
[21] | PALOMARES E, CLIFFORD J N, HAQUE S A, et al.Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers. [J]. Am. Chem. Soc., 2003, 125(2): 475-482. |
[22] | CORBETT J D, VON WINBUSH S, ALBERS F C.The solubility of the post-transition metals in their molten halides. [J]. Am. Chem. Soc., 1957, 79(12): 3020-3024. |
[23] | MABROUK S, DUBEY A, ZHANG W, et al.Increased efficiency for perovskite photovoltaics via doping the PbI2 layer. J. Phys. Chem. C, 2016, 120(43): 24577-24582. |
[24] | OKU T. Crystal Structures of CH3NH3PbI3 and Related Perovskite Compounds Used for Solar Cells, Solar Cells-New Approaches and Reviews, ed. L. A. Kosyachenko, InTech, ISBN: 78-953-51-2184-8, DOI: 10.5772/59284. 2015. |
[25] | LIU T, HU Q, WU J, et al. Mesoporous PbI2 scaffold for high-performance planar heterojunction perovskite solar cells. Adv. Energy Mater., 2016, 6(3): 1501890-1-7. |
[26] | KIM Y C, JEON N J, NOH J H, et al. Beneficial effects of PbI2 incorporated in organo-lead halide perovskite solar cells. Adv. Energy Mater., 2016, 6(4): 1502104-1-8. |
[27] | ZUO L, GUO H, JARIWALA S, et al. Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells. Sci. Adv., 2017, 3(8): e1700106-1-12. |
[1] | QU Mujing, ZHANG Shulan, ZHU Mengmeng, DING Haojie, DUAN Jiaxin, DAI Henglong, ZHOU Guohong, LI Huili. CsPbBr3@MIL-53 Nanocomposite Phosphors: Synthesis, Properties and Applications in White LEDs [J]. Journal of Inorganic Materials, 2024, 39(9): 1035-1043. |
[2] | MIAO Xin, YAN Shiqiang, WEI Jindou, WU Chao, FAN Wenhao, CHEN Shaoping. Interface Layer of Te-based Thermoelectric Device: Abnormal Growth and Interface Stability [J]. Journal of Inorganic Materials, 2024, 39(8): 903-910. |
[3] | XIAO Zichen, HE Shihao, QIU Chengyuan, DENG Pan, ZHANG Wei, DAI Weideren, GOU Yanzhuo, LI Jinhua, YOU Jun, WANG Xianbao, LIN Liangyou. Nanofiber-modified Electron Transport Layer for Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(7): 828-834. |
[4] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[5] | CHEN Tian, LUO Yuan, ZHU Liu, GUO Xueyi, YANG Ying. Organic-inorganic Co-addition to Improve Mechanical Bending and Environmental Stability of Flexible Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(5): 477-484. |
[6] | YANG Bo, LÜ Gongxuan, MA Jiantai. Electrocatalytic Water Splitting over Nickel Iron Hydroxide-cobalt Phosphide Composite Electrode [J]. Journal of Inorganic Materials, 2024, 39(4): 374-382. |
[7] | YU Man, GAO Rongyao, QIN Yujun, AI Xicheng. Influence of Upconversion Luminescent Nanoparticles on Hysteresis Effect and Ion Migration Kinetics in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(4): 359-366. |
[8] | LIU Song, ZHANG Faqiang, LUO Jin, LIU Zhifu. 0.9BaTiO3-0.1Bi(Mg1/2Ti1/2)O3 Ferroelectric Thin Films: Preparation and Energy Storage [J]. Journal of Inorganic Materials, 2024, 39(3): 291-298. |
[9] | ZHANG Yuchen, LU Zhiyao, HE Xiaodong, SONG Guangping, ZHU Chuncheng, ZHENG Yongting, BAI Yuelei. Predictions of Phase Stability and Properties of S-group Elements Containing MAX Borides [J]. Journal of Inorganic Materials, 2024, 39(2): 225-232. |
[10] | ZHOU Zezhu, LIANG Zihui, LI Jing, WU Congcong. Preparation of MAPbI3 Perovskite Solar Cells/Module via Volatile Solvents [J]. Journal of Inorganic Materials, 2024, 39(11): 1197-1204. |
[11] | LI Qianyuan, LI Jiwei, ZHANG Yuhan, LIU Yankang, MENG Yang, CHU Yu, ZHU Yijia, XU Nuoyan, ZHU Liang, ZHANG Chuanxiang, TAO Haijun. Enhanced Photovoltaic Performance of Perovskite Solar Cells by PbTiO3 Modification and Polarization Treatment [J]. Journal of Inorganic Materials, 2024, 39(11): 1205-1211. |
[12] | ZHOU Yunkai, DIAO Yaqi, WANG Minglei, ZHANG Yanhui, WANG Limin. First-principles Calculation Study of the Oxidation Resistance of PANI Modified Ti3C2(OH)2 [J]. Journal of Inorganic Materials, 2024, 39(10): 1151-1158. |
[13] | HAN Xu, YAO Hengda, LYU Mei, LU Hongbo, ZHU Jun. Application of Single-molecule Liquid Crystal Additives in CH(NH2)2PbI3 Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(9): 1097-1102. |
[14] | FANG Wanli, SHEN Lili, LI Haiyan, CHEN Xinyu, CHEN Zongqi, SHOU Chunhui, ZHAO Bin, YANG Songwang. Effect of Film Formation Processes of NiOx Mesoporous Layer on Performance of Perovskite Solar Cells with Carbon Electrodes [J]. Journal of Inorganic Materials, 2023, 38(9): 1103-1109. |
[15] | DING Tongshun, FENG Ping, SUN Xuewen, SHAN Husheng, LI Qi, SONG Jian. Perovskite Film Passivated by Fmoc-FF-OH and Its Photovoltaic Performance [J]. Journal of Inorganic Materials, 2023, 38(9): 1076-1082. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||