[1] |
YAO XIA-YIN, LIU DENG, WANG CHUN-SHENG, et al. Nano Letters. Nano Letters, 2016, 16(11): 7148-7154.
|
[2] |
XU XIAO-XIONG, WEN ZHAO-YIN.Glass and glass-ceramics solid electrolytes for lithium-ion battery.Journal of Inorganic Materials, 2005, 20(1): 21-26.
|
[3] |
ZHANG JIAN-JUN, ZHAO JIANG-HUI, YUE LI-PING, et al. Advanced Energy Materials. Advanced Energy Materials, 2015, 5(24): 1401408.
|
[4] |
ZENG XIAN-XIANG, YIN YA-XIA, LI NIAN-WU, et al. Reshaping lithium plating/stripping behavior via bifunctional polymer electrolyte for room-temperature solid Li metal batteries. Journal of the American Chemical Society, 2016, 138(49): 15825-15828.
|
[5] |
ZHENG YUE-LEI, CHEN REN-JIE, WU FENG, et al. Journal of Inorganic Materials. Journal of Inorganic Materials, 2013, 28(11): 1172-1180.
|
[6] |
YADA CHIHIRO, OHMORI AKIHIRO, IDE KAZUTO, et al. Advanced Energy Materials. Advanced Energy Materials, 2014, 4(9): 1301416.
|
[7] |
MURUGAN RAMASWAMY, THANGADURAI VENKATARAMAN, WEPPNER WERNER.Fast lithium ion conduction in garnet-type Li7La3Zr2O12.Angewandte Chemie-International Edition, 2007, 46(41): 7778-7781.
|
[8] |
LIU CAI, WEN ZHAO-YIN, RUI KUN.High ion conductivity in garnet-type F-doped Li7La3Zr2O12.Journal of Inorganic Materials, 2015, 30(9): 995-1000.
|
[9] |
HUANG MIAN, SHOJI MAO, SHEN YANG, et al. Preparation and electrochemical properties of Zr-site substituted Li7La3(Zr2-xMx)O12, 2014, 261: 206-211.
|
[10] |
WU JIAN-FANG, CHEN EN-YI, YU YAO, et al. Gallium-doped Li7La3Zr2O12 garnet-type electrolytes with high lithium-ion conductivity. ACS Applied Materials & Interfaces, 2017, 9(2): 1542-1552.
|
[11] |
TSAI CHIH-LONG, RODDATIS VLADIMIR, CHANDRAN C VINOD, et al. Li7La3Zr2O12 interface modification for Li dendrite prevention. ACS Applied Materials & Interfaces, 2016, 8(16): 10617-10626.
|
[12] |
YAO XIA-YIN, HUANG BING-XIN, YIN JING-YUN, et al. Chinese Physics B. Chinese Physics B, 2016, 25(1): 018802.
|
[13] |
LUO WEI, GONG YUN-HUI, ZHU YI-ZHOU, et al. Journal of the American Chemical Society. Journal of the American Chemical Society, 2016, 138(37): 12258-12262.
|
[14] |
CHENG LEI, CHEN WEI, KUNZ MARTIN, et al. ACS Applied Materials & Interfaces. ACS Applied Materials & Interfaces, 2015, 7(3): 2073-2081.
|
[15] |
HAN XIAO-GANG, GONG YUN-HUI, FU KUN (KELVIN), et al. Nature Materials. Nature Materials, 2016, 16(5): 572.
|
[16] |
OHTA SHINGO, KOMAGATA SHOGO, SEKI JUNTARO, et al. All-solid-state lithium ion battery using garnet-type oxide and Li3BO3 solid electrolytes fabricated by screen-printing. Journal of Power Sources, 2013, 238: 53-56.
|
[17] |
OHTA SHINGO, SEKI JUNTARO, YAGI YUSUKE, et al. Journal of Power Sources. Journal of Power Sources, 2014, 265: 40-44.
|
[18] |
LIU TING, REN YAO-YU, SHEN YANG, et al. Achieving high capacity in bulk-type solid-state lithium ion battery based on Li6.75La3Zr1.75Ta0.25O12 electrolyte: interfacial resistance. Journal of Power Sources, 2016, 324: 349-357.
|
[19] |
KIM KI-HYUN, IRIYAMA YASUTOSHI, YAMAMOTO KAZUO, et al. Characterization of the interface between LiCoO2 and Li7La3Zr2O12 in an all-solid-state rechargeable lithium battery. Journal of Power Sources, 2011, 196(2): 764-767.
|
[20] |
PARK KYUSUNG, YU BYEONG-CHUL, JUNG JI-WON, et al. Electrochemical nature of the cathode interface for a solid-state lithium-ion battery: interface between LiCoO2 and garnet- Li7La3Zr2O12. Chemistry of Materials, 2016, 28(21): 8051-8059.
|
[21] |
VAN DEN BROEK JAN, AFYON SEMIH, RUPP JENNIFER L M. Interface-engineered all-solid-state Li-ion batteries based on garnet-type fast Li+ conductors.Advanced Energy Materials, 2016, 6(19): 1600736.
|
[22] |
DU FU-MING, ZHAO NING, LI YI-QIU, et al. Journal of Power Sources. Journal of Power Sources, 2015, 300: 24-28.
|
[23] |
OKADA KAZUYA, MACHIDA NOBUYA, NAITO MUNEYUKI, et al. Preparation and electrochemical properties of LiAlO2-coated Li(Ni1/3Mn1/3Co1/3)O2 for all-solid-state batteries. Solid State Ionics, 2014, 255: 120-127.
|
[24] |
SAKUDA ATSUSHI, TAKEUCHI TOMONARI, KOBAYASHI HIRONORI.Electrode morphology in all-solid-state lithium secondary batteries consisting of LiNi1/3Mn1/3Co1/3O2 and Li2S-P2S5 solid electrolytes.Solid State Ionics, 2016, 285: 112-117.
|
[25] |
HAN FU-DONG, ZHU YI-ZHOU Z, HE XING-FENG, et al. Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes. Advanced Energy Materials, 2016, 6(8): 1501590.
|
[26] |
JALEM R, MORISHITA Y, OKAJIMA T, et al. Journal of Materials Chemistry A. Journal of Materials Chemistry A, 2016, 4(37): 14371-14379.
|
[27] |
YOUNESI REZA, CHRISTIANSEN ANE-SÆLLAND, SCIPIONI ROBERTO, et al. Journal of the Electrochemical Society. Journal of the Electrochemical Society, 2015, 162(7): A1289-A1296.
|
[28] |
QUINLAN RONALD A, LU YI-CHUN, YANG SHAO-HORN, et al. XPS studies of surface chemistry changes of LiNi0.5Mn0.5O2 electrodes during high-voltage cycling. Journal of the Electrochemical Society, 2013, 160(4): A669-A677.
|
[29] |
YOUNESI REZA, HAHLIN MARIA, ROBERTS MATTHEW, et al. The SEI layer formed on lithium metal in the presence of oxygen: a seldom considered component in the development of the Li-O2 battery. Journal of Power Sources, 2013, 225: 40-45.
|
[30] |
ZHENG JIAN-MING, XIAO JIE, XU WU, et al. Journal of Power Sources. Journal of Power Sources, 2013, 227: 211-217.
|