Journal of Inorganic Materials ›› 2017, Vol. 32 ›› Issue (7): 705-712.DOI: 10.15541/jim20160520
• Orginal Article • Previous Articles Next Articles
BAI Xue-Jun1, LIU Chan1, HOU Min1, WANG Biao2, CAO Hui1,3, FU Jun-Jie4
Received:
2016-09-18
Revised:
2016-11-25
Published:
2017-07-20
Online:
2017-06-23
CLC Number:
BAI Xue-Jun, LIU Chan, HOU Min, WANG Biao, CAO Hui, FU Jun-Jie. Silicon/CNTs/Graphene Free-standing Anode Material for Lithium-ion Battery[J]. Journal of Inorganic Materials, 2017, 32(7): 705-712.
Fig. 5 XPS spectra of CNTs, Si/GP, Si/CNTs/GO, and Si/CNTs/GP composite(a) Survey spectra; (b) High resolution C1s spectra; (c) High resolution N1s spectra; (d) High resolution Si2p spectra
Sample | Rs/Ω | RSEI /Ω | Rct/Ω |
---|---|---|---|
Si/GP | 3.5 | 22.1 | 25.2 |
Si/CNTs/GP-1 | 2.5 | 8.7 | 19.9 |
Si/CNTs/GP-2 | 2.0 | 1.7 | 18.1 |
Table 1 EIS fitting results of Si/GP and Si/CNTs/GP-(1, 2) electrodes
Sample | Rs/Ω | RSEI /Ω | Rct/Ω |
---|---|---|---|
Si/GP | 3.5 | 22.1 | 25.2 |
Si/CNTs/GP-1 | 2.5 | 8.7 | 19.9 |
Si/CNTs/GP-2 | 2.0 | 1.7 | 18.1 |
[1] | GOODENOUGH J B, KIM Y.Challenges for rechargeable Li batteries.Chem. Mater., 2010, 22(3): 587-603. |
[2] | DUNN B, KAMATH H, TARASCON J M.Electrical energy storage for the grid: a battery of choices.Science, 2011, 334(6058): 928-935. |
[3] | LI H, WANG Z, CHEN L, et al.Research on advanced materials for Li-ion batteries. Adv. Mater., 2009, 21(45): 4593-4607. |
[4] | TARASCON J M, ARMAND M.Issues and challenges facing rechargeable lithium batteries.Nature, 2001, 414(6861): 359-367. |
[5] | WANG H B, ZHOU Y H, TAO Z L, et al.Research progress of silicon-based anodes for lithium-ion batteries.Chinese J. Power Sources, 2009, 33(11): 1029-1032. |
[6] | GUO B K, SHU J, WANG Z X, et al.Electrochemical reduction of nano-SiO2 in hard carbon as anode material for lithium ion batteries.Electrochem. Commun., 2008, 10(12): 1876-1878. |
[7] | SUN Q, ZHANG B, FU Z W.Lithium electrochemistry of SiO2 thin film electrode for lithium-ion batteries.Appl. Surf. Sci., 2008, 254(13): 3774-3779. |
[8] | CHANG W S, PARK C M, KIM J H, et al.Quartz (SiO2): a new energy storage anode material for Li-ion batteries.Energy Environ. Sci., 2012, 5(5): 6895-6899. |
[9] | YU B C, HWA Y, KIM J H, et al.A new approach to synthesis of porous SiOx anode for Li-ion batteries via chemical etching of Si crystallites.Electrochem. Acta, 2014, 117(4): 426-430. |
[10] | MA C L, MA C, WANG J Z, et al.Exfoliated graphite as a flexible and conductive support for Si-based Li-ion battery anodes.Carbon, 2014, 72(3): 38-46. |
[11] | ZHOU X, YIN Y X, WAN L J, et al.Self-assembled nanocomposite of silicon nanoparticles encapsulated in graphene through electrostatic attraction for lithium-ion batteries.Adv. Energy Mater., 2012, 2(9): 1086-1090. |
[12] | SI Q, HANAI K, ICHIKAWA T, et al.A high performance silicon/carbon composite anode with carbon nanofiber for lithium-ion batteries.J. Power Sources, 2010, 195(6): 1720-1725. |
[13] | WANG L, DING C X, ZHANG L C, et al.A novel carbon-silicon composite nanofiber prepared via electrospinning as anode material for high energy-density lithium ion batteries.J. Power Sources, 2010, 195(15): 5052-5056. |
[14] | WU H, ZHENG G, LIU N, et al.Engineering empty space between Si nanoparticles for lithium-ion battery anodes.Nano Lett., 2012, 12(2): 904-909. |
[15] | JOHNSON D C, MOSBY J M, RIHA S C, et al.Synthesis of copper silicide nanocrystallites embedded in silicon nanowires for enhanced transport properties.J. Mater. Chem., 2010, 20(10): 1993-1998. |
[16] | LAÏK B, UNG D, CAILLARD A, et al. An electrochemical and structural investigation of silicon nanowires as negative electrode for Li-ion batteries.J. Solid State Electrochem., 2010, 14(10): 1835-1839. |
[17] | CHEN H, XIAO Y, WANG L, et al.Silicon nanowires coated with copper layer as anode materials for lithium-ion batteries.J. Power Sources, 2011, 196(16): 6657-6662. |
[18] | HU L B, WU H, HONG S S, et al.Si nanoparticle-decorated Si nanowire networks for Li-ion battery anodes.Chem. Commun., 2011, 47(1): 367-369. |
[19] | PARK M H, KIM M G, JOO J, et al.Silicon nanotube battery anodes.Nano Lett., 2009, 9(11): 3844-3847. |
[20] | LEE W J, PARK M H, WANG Y, et al.Nanoscale Si coating on the pore walls of SnO2 nanotube anode for Li rechargeable batteries.Chem. Commun., 2010, 46(4): 622-624. |
[21] | SONG T, XIA J L, LEE J H, et al.Arrays of sealed silicon nanotubes As anodes for lithium ion batteries.Nano Lett., 2010, 10(5): 1710-1716. |
[22] | YU Y, GU L, ZHU C, et al.Reversible storage of lithium in silver-coated three-dimensional macroporous silicon.Adv. Mater., 2010, 22(20): 2247-2250. |
[23] | YAO Y, MCDOWELL M T, RYU I, et al.Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life.Nano Lett., 2011, 11(7): 2949-2954. |
[24] | CHEN D, MEI X, JI G, et al.Reversible lithium-ion storage in silver-treated nanoscale hollow porous silicon particles.Angew. Chem. Int. Ed. Engl., 2012, 51(10): 2409-2413. |
[25] | BAI X, WANG B, WANG H, et al.In situ synthesis of carbon fiber-supported SiOx as anode materials for lithium ion batteries.RSC Adv., 2016, 6(39): 32798-32803. |
[26] | LEE B S, SON S B, PARK K M, et al.Fabrication of Si core/C shell nanofibers and their electrochemical performances as a lithium-ion battery anode.J. Power Sources, 2012, 206(2): 267-273. |
[27] | LIU X H, ZHANG J, SI W P, et al.Sandwich nano architecture of Si/reduced graphene oxide bilayer nanomembranes for Li-ion batteries with long cycle life.ACS Nano, 2015, 9(2): 1198-1205. |
[28] | ZHAO X, HAYNER C M, KUNG M C, et al.In-plane vacancy-enabled high-power Si-graphene composite electrode for lithium-ion batteries.Adv. Energy Mater., 2011, 1(6): 1079-1084. |
[29] | MAGASINSKI A, DIXON P, HERZBERG B, et al.High- performance lithium-ion anodes using a hierarchical bottom-up approach.Nature Mater., 2010, 9(4): 353-358. |
[30] | BAI X J, YU Y Y, KUNG H H, et al.Si@SiOx/graphene hydrogel composite anode for lithium-ion battery.J. Power Sources, 2016, 306: 42-48. |
[31] | ZHANG S, SHAO Y Y, LIAO H G, et al.Polyelectrolyte-induced reduction of exfoliated graphite xxide: a facile route to synthesis of soluble graphene nanosheets.ACS Nano, 2011, 5(3): 1785-1791. |
[32] | ZHANG J, JIANG J, ZHAO X S.Synthesis and capacitive properties of manganese oxide nanosheets dispersed on functionalized graphene Sheets.J. Phys. Chem. C, 2011, 115(14): 6448-6454. |
[33] | ZHU Y C, ZHOU Y H, YU L Y, et al.A highly stable and active Pd catalyst on monolithic cordierite with graphene coating assisted by PDDA.RSC Adv., 2014, 4(19): 9480-9483. |
[34] | ZHANG H J, GAI P B, CHENG R, et al.Self-assembly synthesis of a hierarchical structure using hollow nitrogen-doped carbon spheres as spacers to separate the reduced graphene oxide for simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid.Anal. Methods, 2013, 5(14): 3591-3600. |
[35] | WANG D W, MIN Y G, YU Y H, et al.A general approach for fabrication of nitrogen-doped graphene sheets and its application in supercapacitors.J. Colloid and Interf. Sci., 2014, 417(3): 270-277. |
[1] | WANG Hao, LIU Xuechao, ZHENG Zhong, PAN Xiuhong, XU Jintao, ZHU Xinfeng, CHEN Kun, DENG Weijie, TANG Meibo, GUO Hui, GAO Pan. Performance of Lateral 4H-SiC Photoconductive Semiconductor Switches by Extrinsic Backside Trigger [J]. Journal of Inorganic Materials, 2024, 39(9): 1070-1076. |
[2] | LIU Pengdong, WANG Zhen, LIU Yongfeng, WEN Guangwu. Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(9): 992-1004. |
[3] | CAO Qingqing, CHEN Xiangyu, WU Jianhao, WANG Xiaozhuo, WANG Yixuan, WANG Yuhan, LI Chunyan, RU Fei, LI Lan, CHEN Zhi. Visible-light Photodegradation of Tetracycline Hydrochloride on Self-sensitive Carbon-nitride Microspheres Enhanced by SiO2 [J]. Journal of Inorganic Materials, 2024, 39(7): 787-792. |
[4] | ZHENG Yawen, ZHANG Cuiping, ZHANG Ruijie, XIA Qian, RU Hongqiang. Fabrication of Boron Carbide Ceramic Composites by Boronic Acid Carbothermal Reduction and Silicon Infiltration Reaction Sintering [J]. Journal of Inorganic Materials, 2024, 39(6): 707-714. |
[5] | LI Honglan, ZHANG Junmiao, SONG Erhong, YANG Xinglin. Mo/S Co-doped Graphene for Ammonia Synthesis: a Density Functional Theory Study [J]. Journal of Inorganic Materials, 2024, 39(5): 561-568. |
[6] | SUN Chuan, HE Pengfei, HU Zhenfeng, WANG Rong, XING Yue, ZHANG Zhibin, LI Jinglong, WAN Chunlei, LIANG Xiubing. SiC-based Ceramic Materials Incorporating GNPs Array: Preparation and Mechanical Characterization [J]. Journal of Inorganic Materials, 2024, 39(3): 267-273. |
[7] | WANG Yanli, QIAN Xinyi, SHEN Chunyin, ZHAN Liang. Graphene Based Mesoporous Manganese-Cerium Oxides Catalysts: Preparation and Low-temperature Catalytic Reduction of NO [J]. Journal of Inorganic Materials, 2024, 39(1): 81-89. |
[8] | YANG Pingjun, LI Tiehu, LI Hao, DANG Alei. Effect of Graphene on Graphitization, Electrical and Mechanical Properties of Epoxy Resin Carbon Foam [J]. Journal of Inorganic Materials, 2024, 39(1): 107-112. |
[9] | DONG Yiman, TAN Zhan’ao. Research Progress of Recombination Layers in Two-terminal Tandem Solar Cells Based on Wide Bandgap Perovskite [J]. Journal of Inorganic Materials, 2023, 38(9): 1031-1043. |
[10] | XU Hao, QIAN Wei, HUA Yinqun, YE Yunxia, DAI Fengze, CAI Jie. Effects of Micro Texture Processed by Picosecond Laser on Hydrophobicity of Silicon Carbide [J]. Journal of Inorganic Materials, 2023, 38(8): 923-930. |
[11] | YANG Zhuo, LU Yong, ZHAO Qing, CHEN Jun. X-ray Diffraction Rietveld Refinement and Its Application in Cathode Materials for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2023, 38(6): 589-605. |
[12] | CHEN Qiang, BAI Shuxin, YE Yicong. Highly Thermal Conductive Silicon Carbide Ceramics Matrix Composites for Thermal Management: a Review [J]. Journal of Inorganic Materials, 2023, 38(6): 634-646. |
[13] | GU Xuesu, YIN Jie, WANG Kanglong, CUI Chong, MEI Hui, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Effect of Particle Grading on Properties of Silicon Carbide Ceramics by Binder Jetting Printing [J]. Journal of Inorganic Materials, 2023, 38(12): 1373-1378. |
[14] | FU Shi, YANG Zengchao, LI Jiangtao. Progress of High Strength and High Thermal Conductivity Si3N4 Ceramics for Power Module Packaging [J]. Journal of Inorganic Materials, 2023, 38(10): 1117-1132. |
[15] | LI Honghua, DONG Wanru, WANG Liang, YANG Zengchao, LI Jiangtao. Consistency of Silicon Nitride Powders Produced by Combustion Synthesis: Evaluation and Application [J]. Journal of Inorganic Materials, 2023, 38(10): 1169-1175. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||