Journal of Inorganic Materials ›› 2017, Vol. 32 ›› Issue (6): 561-570.DOI: 10.15541/jim20160479
Special Issue: MAX相和MXene材料
• Orginal Article • Next Articles
ZHANG Jian-Feng, CAO Hui-Yang, WANG Hong-Bing
Received:
2016-08-29
Revised:
2016-10-08
Published:
2017-06-20
Online:
2017-05-27
Supported by:
CLC Number:
ZHANG Jian-Feng, CAO Hui-Yang, WANG Hong-Bing. Research Progress of Novel Two-dimensional Material MXene[J]. Journal of Inorganic Materials, 2017, 32(6): 561-570.
Fig. 1 Fragment of the periodic table, showing elements forming MAX phases with general composition Mn+1AXn. Inset is an example of packing motif for the MAX phases[11]
Fig. 3 Citation reports analysis of Mxene(a) The number of MXene papers published recently; (b) The number of citations about MXene published recently; (c) The contribution rate of ten main organizations in the 306 papers about MXene; (d) The contribution rate of ten main authors in the 306 papers about MXene
System | *Ecoh / eV | *ΔEcoh / eV |
---|---|---|
*TiC | 7.49(7.16a; 9.14b; 9.28c; 7.20d; 7.30e; 7.31f; 7.45i) | - |
*Ti2AlC | 6.29(7.79c) | 1.20(1.49c) |
Ti2Al0.5C | 6.28 | 1.21 |
Ti2C | 6.28 | 1.21 |
Ti3AlC2 | 6.71(8.32c; 6.93g; 7.70h; 8.499j) | 0.78(0.96c) |
Ti3Al0.5C2 | 6.76 | 0.73 |
Ti3C2 | 6.82 | 0.67 |
Table1 Cohesive energies ( Ecoh, ) and differences in Ecoh ( ΔE ) for MAX Tin+1AlCn phases, Tin+1Al0.5Cn and Tin+1Cn free-standing NBs uersus B1-TiC[37]
System | *Ecoh / eV | *ΔEcoh / eV |
---|---|---|
*TiC | 7.49(7.16a; 9.14b; 9.28c; 7.20d; 7.30e; 7.31f; 7.45i) | - |
*Ti2AlC | 6.29(7.79c) | 1.20(1.49c) |
Ti2Al0.5C | 6.28 | 1.21 |
Ti2C | 6.28 | 1.21 |
Ti3AlC2 | 6.71(8.32c; 6.93g; 7.70h; 8.499j) | 0.78(0.96c) |
Ti3Al0.5C2 | 6.76 | 0.73 |
Ti3C2 | 6.82 | 0.67 |
Fig. 4 The relative energy position of the lowest NFE state for functionalized MXenes, as well as for graphene, graphane, BN, and MoS2 layers with respect to the Fermi level (Ef) as a function of the work function[47]
MXene content/wt% | Thickness/μm | Conductivity/(S·m-1) | Tensile strength/MPa | Young’s modulus/GPa | Strain to failure/% |
---|---|---|---|---|---|
100 | 3.3 | 240238±3500 | 22±2 | 3.52±0.01 | 1.0±0.2 |
90 | 3.9 | 22433±1400 | 30±3 | 3.00±0.01 | 1.8±0.3 |
80 | 6.1 | 137±3 | 25±4 | 1.7±0.2 | 2.0±0.4 |
60 | 7.2 | 1.30±0.08 | 43±8 | 1.8±0.6 | 3.0±0.5 |
40 | 12.0 | 0.040±0.003 | 91±10 | 3.70±0.02 | 4.0±0.5 |
0 | 13.0 | - | 30±5 | 1.0±0.3 | 15.0±6.5 |
Table2 Physical properties of Ti3C2Tx, Ti3C2Tx/PVA and PVA films[53]
MXene content/wt% | Thickness/μm | Conductivity/(S·m-1) | Tensile strength/MPa | Young’s modulus/GPa | Strain to failure/% |
---|---|---|---|---|---|
100 | 3.3 | 240238±3500 | 22±2 | 3.52±0.01 | 1.0±0.2 |
90 | 3.9 | 22433±1400 | 30±3 | 3.00±0.01 | 1.8±0.3 |
80 | 6.1 | 137±3 | 25±4 | 1.7±0.2 | 2.0±0.4 |
60 | 7.2 | 1.30±0.08 | 43±8 | 1.8±0.6 | 3.0±0.5 |
40 | 12.0 | 0.040±0.003 | 91±10 | 3.70±0.02 | 4.0±0.5 |
0 | 13.0 | - | 30±5 | 1.0±0.3 | 15.0±6.5 |
Fig. 5 Schematic of the exfoliation process for Ti3AlC2(a) Ti3AlC2 structure; (b) Selective etching of the A element from the MAX phases after reaction with HF; (c) surface-terminating functional groups
MAX structure | MAX | MXene | Etching conduction | Particle size /μm | c-lattice parameter/nm | Ref. | |||
---|---|---|---|---|---|---|---|---|---|
HF/% | Time/h | Temp. /℃ | MAX | MXene | |||||
211 | Ti2AlC | Ti2CTx | 10 | 10 | 25 | <35 | 1.360 | 1.504 | [10] |
Nb2AlC | Nb2CTx | 50 | 90 | 25 | <38 | 1.388 | 2.234 | [58] | |
V2AlC | V2CTx | 40 | 168 | 25 | <74 | 1.315 | 2.370 | [59] | |
TiNbAlC | TiNbCTx | 50 | 28 | 25 | <35 | 1.379 | 1.488 | [10] | |
312 | Ti3AlC2 | Ti3C2Tx | 50 | 2 | 25 | <35 | 1.842 | 2.051 | [10-11] |
Ti3AlC2 | Ti3C2Tx | 40 | 20 | 25 | - | 1.862 | 2.089 | [60] | |
Ti3AlC2 | Ti3C2Tx | 49 | 24 | 60 | - | 1.830 | 1.990 | [61] | |
Ti3AlCN | Ti3CNTx | 30 | 18 | 25 | <35 | 1.841 | 2.228 | [10] | |
(V0.5Cr0.5)2AlC2 | (V0.5Cr0.5)2C2Tx | 50 | 69 | 25 | <35 | 1.773 | 2.426 | [10] | |
413 | Ta4AlC3 | Ta4C3Tx | 50 | 72 | 25 | <35 | 2.408 | 3.034 | [10] |
Nb4AlC3 | Nb4C3Tx | 48-51 | 96 | 25 | <38 | 2.242 | 3.059 | [21] |
Table3 Process conditions and c-lattice parameters for MXene synthesis from MAX phases
MAX structure | MAX | MXene | Etching conduction | Particle size /μm | c-lattice parameter/nm | Ref. | |||
---|---|---|---|---|---|---|---|---|---|
HF/% | Time/h | Temp. /℃ | MAX | MXene | |||||
211 | Ti2AlC | Ti2CTx | 10 | 10 | 25 | <35 | 1.360 | 1.504 | [10] |
Nb2AlC | Nb2CTx | 50 | 90 | 25 | <38 | 1.388 | 2.234 | [58] | |
V2AlC | V2CTx | 40 | 168 | 25 | <74 | 1.315 | 2.370 | [59] | |
TiNbAlC | TiNbCTx | 50 | 28 | 25 | <35 | 1.379 | 1.488 | [10] | |
312 | Ti3AlC2 | Ti3C2Tx | 50 | 2 | 25 | <35 | 1.842 | 2.051 | [10-11] |
Ti3AlC2 | Ti3C2Tx | 40 | 20 | 25 | - | 1.862 | 2.089 | [60] | |
Ti3AlC2 | Ti3C2Tx | 49 | 24 | 60 | - | 1.830 | 1.990 | [61] | |
Ti3AlCN | Ti3CNTx | 30 | 18 | 25 | <35 | 1.841 | 2.228 | [10] | |
(V0.5Cr0.5)2AlC2 | (V0.5Cr0.5)2C2Tx | 50 | 69 | 25 | <35 | 1.773 | 2.426 | [10] | |
413 | Ta4AlC3 | Ta4C3Tx | 50 | 72 | 25 | <35 | 2.408 | 3.034 | [10] |
Nb4AlC3 | Nb4C3Tx | 48-51 | 96 | 25 | <38 | 2.242 | 3.059 | [21] |
[1] | NOVOSELOV K S, GEIM A K, MOROZOV S V, et al.Electric field effect in atomically thin carbon films.Science, 2004, 306(5696): 666-669. |
[2] | KUANG DA, HU WEN-BIN.Research progress of grapheme composites.Journal of Inorganic Materials, 2013, 28(3): 235-246. |
[3] | ZHU Y, MURALI S, CAI W, et al.Graphene and graphene oxide: synthesis, properties, and applications.Adv. Mater., 2010, 22(46): 5226. |
[4] | HUANG X, YIN Z, WU S, et al.Graphene-based materials: synthesis, characterization, properties, and applications.Small, 2011, 7(14): 1876-1902. |
[5] | HUANG H, YANG S, ROBERT V, et al.Pt-Decorated 3D architectures built from graphene and graphitic carbon nitride nanosheets as efficient methanol oxidation catalysts.Adv. Mater., 2014, 26(30): 5160-5165. |
[6] | HUANG H, CHEN Q, HE M, et al.A ternary Pt/MnO2/graphene nanohybrid with an ultrahigh electrocatalytic activity toward methanol oxidation.J. Power Sources, 2013, 239(10): 189-195. |
[7] | HUANG H, CHEN H, SUN D, et al.Graphene nanoplate-Pt composite as a high performance electrocatalyst for direct methanol fuel cells.J. Power Sources, 2012, 204(1): 46-52. |
[8] | JIANG Q G, ZHANG J F, AO Z M, et al.Density functional theory study on the electronic properties and stability of silicene/silicane nanoribbons.J. Mater. Chem., 2015, 3(16): 3954-3959. |
[9] | MICHAEL N, MURAT K, VOLKER P, et al.Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2.Adv. Mater., 2011, 21(1): 17-35. |
[10] | NAGUIB M, MASHTALIR O, CARLE J, et al.Two-dimensional transition metal carbides.ACS Nano, 2012, 6(2): 1322-1331. |
[11] | IVANOVSKII A L, ENYASHIN A N.Graphene-like transition- metal nanocarbides and nanonitrides.Russ. Chem. Rev., 2013, 82(8): 735-746. |
[12] | NOWOTNY V H.Strukturchemie einiger Verbindungen der Übergangsmetalle mit den elementen C, Si, Ge, Sn.Prog. Solid State Chem., 1971, 5(71): 27-70. |
[13] | BARSOUM M W.The Mn+1AXn phases: a new class of solids: Thermodynamically stable nanolaminates.Prog. Solid State Chem., 2000, 28(1-4): 201-281. |
[14] | ZHOU AI-GUO, LI ZHENG-YANG, LI LIANG, et al.Preparation and microstructure of Ti3SiC2 bonded cubic boron nitride superhard composites.Journal of the Chinese Ceramic Society, 2014, 42(2): 220-224. |
[15] | LV TIAN-BAO.Transformation of WPA process from dehydrated into dehydrated-hemihydrates method.Phosphate Compound Fertilizer, 2010, 25(2): 31-32. |
[16] | BARSOUM M W, EL-RAGHY T.The MAX phases: unique new carbide and nitride materials: ternary ceramics turn out to be surprisingly soft and machinable, yet also heat-tolerant, strong and lightweight.Americanentist, 2001, 89(4): 334-343. |
[17] | EKLUND P, BECKERS M, JANSSON U, et al.The Mn+1AXn phases: materials science and thin-film processing.Thin Solid Films, 2010, 518(8): 1851-1878. |
[18] | ZHANG X, XUE M, YANG X, et al.Preparation and tribological properties of Ti3C2(OH)2 nanosheets as additives in base oil.RSC Adv., 2014, 5(4): 56-63. |
[19] | QING T, ZHEN Z, PANWEN S.Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer.J. Am. Chem. Soc., 2012, 134(40): 16909-16916. |
[20] | SHEIN I R, IVANOVSKII A L.Graphene-like nanocarbides and nanonitrides of d metals (MXenes): synthesis, properties and simulation.Micro Nano Lett., 2013, 8(2): 59-62. |
[21] | GHIDIU M, NAGUIB M, SHI C, et al.Synthesis and characterization of two-dimensional Nb4C3 (MXene).Chem. Commun., 2014, 50(67): 9517-9520. |
[22] | MASHTALIR O, LUKATSKAYA M R, ZHAO M Q, et al.Amine-assisted delamination of Nb2C MXene for Li-ion energy storage devices.Adv. Mater., 2015, 27(23): 3501-3506. |
[23] | MICHAEL G, LUKATSKAYA M R, ZHAO MENG-QIANG, et al.Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance.Nature, 2014, 516(7529): 78-81. |
[24] | SUN Z M.Progress in research and development on MAX phases: a family of layered ternary compounds.Int. Mater. Rev., 2011, 56(3): 143-166. |
[25] | NAGUIB M, MOCHALIN V N, BARSOUM M W, et al.25th anniversary article: MXenes: a new family of two-dimensional materials.Adv. Mater., 2014, 26(7): 992-1005. |
[26] | ZHANG H, WANG L, CHEN Q, et al.Preparation, mechanical and anti-friction performance of MXene/polymer composites.Mater. Design, 2016, 92(11): 682-689. |
[27] | MA T Y, CAO J L, JARONIEC M, et al.Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution.Angew. Chem., Int. Ed., 2016, 55(3): 1138-1142. |
[28] | ZHANG X, LEI J C, WU D H, et al.A Ti-anchored Ti2CO2 monolayer (MXene) as a single-atom catalyst for CO oxidation.J. Mater. Chem. A, 2016, 4(13): 4871-4876. |
[29] | SUN D D, HU Q K, CHEN J F, et al.Structural transformation of MXene (V2C, Cr2C, and Ta2C) with O groups during lithiation: A first-principles investigation.ACS Appl. Mater. Inter., 2016, 8(1): 74-81. |
[30] | GUO X, ZHANG X T, ZHAO S J, et al.High adsorption capacity of heavy metals on two-dimensional MXenes: an ab initio study with molecular dynamics simulation.Phys. Chem. Chem. Phys., 2016, 18(1): 228-233. |
[31] | WANG H, ZHANG J, WU Y, et al.Surface modified MXene Ti3C2 multilayers by aryl diazonium salts leading to large-scale delamination.Appl. Surf. Sci., 2016, 384: 287-293. |
[32] | WANG H, WU Y, ZHANG J, et al.Enhancement of the electrical properties of MXene Ti3C2 nanosheets by post-treatments of alkalization and calcination.Materials Letters, 2015, 160: 537-540. |
[33] | WANG K, ZHOU Y, XU W, et al.Fabrication and thermal stability of two-dimensional carbide Ti3C2 nanosheets.Ceram. Int., 2016, 42(7): 8419-8424. |
[34] | YANG J, LUO X, ZHANG S, et al.Magnetic and electronic properties of transition metal doped Sc2CT2 (T = O, OH or F) by a first principles study.Phys. Chem. Chem. Phys., 2016, 18(18): 12914-12919. |
[35] | PENG QIUMING, GUO JIANXIN, ZHANG QINGRUI, et al.Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide.J. Am. Chem. Soc., 2014, 136(11): 4113-4116. |
[36] | SHEIN I R, IVANOVSKII A L.Graphene-like titanium carbides and nitrides Tin+1Cn, Tin+1Nn(n= 1, 2, and 3) from de-intercalated MAX phases: First-principles probing of their structural, electronic properties and relative stability.Comp. Mater. Sci., 2012, 65: 104-114. |
[37] | SHEIN I R, IVANOVSKII A L.Planar nano-block structures Tin+1Al0.5Cn and Tin+1Cn(n = 1, and 2) from MAX phases: structural, electronic properties and relative stability from first principles calculations.Superlattices Microstruct., 2012, 52(2): 147-157. |
[38] | ENYASHIN A N, IVANOVSKII A L.Atomic structure, comparative stability and electronic properties of hydroxylated Ti2C and Ti3C2 nanotubes.Comput. Theor. Chem., 2012, 989(6): 27-32. |
[39] | TAO H, JIEMIN W, HUI Z, et al.Vibrational properties of Ti3C2 and Ti3C2T2 (T = O, F, OH) monosheets by first-principles calculations: a comparative study.Phys. Chem. Chem. Phys., 2015, 17(15): 9997-10003. |
[40] | ENYASHIN A N, IVANOVSKII A L.Two-dimensional titanium carbonitrides and their hydroxylated derivatives: structural, electronic properties and stability of MXenes Ti3C2-xNx(OH)2 from DFTB calculations.J. Solid State Chem., 2013, 207: 42-48. |
[41] | MAUCHAMP V, BUGNET M, BELLIDO E P, et al.Enhanced and tunable surface plasmons in two-dimensional Ti3C2 stacks: Electronic structure versus boundary effects.Phys. Rev. B, 2014, 89(23): 2495-2502. |
[42] | XIE Y, KENT P R C. Hybrid density functional study of structural and electronic properties of functionalized Tin+1Xn(X=C, N) monolayers.Phys. Rev. B, 2013, 87(23): 939-949. |
[43] | ZHAO S, KANG W, XUE J.Manipulation of electronic and magnetic properties of M2C (M=Hf, Nb, Sc, Ta, Ti, V, Zr) monolayer by applying mechanical strains.Appl. Phys. Lett., 2014, 104(13): 133106-133109. |
[44] | WANG S, LI J X, DU Y L, et al.First-principles study on structural, electronic and elastic properties of graphene-like hexagonal Ti2C monolayer.Computational Materials Science, 2014, 83: 290-293. |
[45] | LASHGARI H, ABOLHASSANI M R, BOOCHANI A, et al.Electronic and optical properties of 2D graphene-like compounds titanium carbides and nitrides: DFT calculations.Solid State Commun., 2014, 195(10): 61-69. |
[46] | LANE N J, BARSOUM M W, RONDINELLI J M.Correlation effects and spin-orbit interactions in two-dimensional hexagonal 5d transition metal carbides, Tan+1Cn (n = 1, 2, 3).EPL, 2013, 101(5): 57004-57008. |
[47] | KHAZAEI M, RANJBAR A, GHORBANIASL M, et al.Nearly free electron states in MXenes.Phys. Rev. B, 2016, 93(20): 205125-205135. |
[48] | SHAO JIAO-JING, ZHENG DE-YI, LI ZHENG-JIE, et al.Top-down fabrication of two-dimensional nanomaterials: controllable liquid phase exfoliation.New Carbon Materials, 2016, 31(2): 97-114. |
[49] | KHAZAEI M, ARAI M, SASAKI T, et al.Novel electronic and magnetic properties of two-dimensional transition metal carbides and Nitrides.Adv. Funct. Mater., 2013, 23(17): 2185-2192. |
[50] | WU F, LUO K, HUANG C, et al.Theoretical understanding of magnetic and electronic structures of Ti3C2 monolayer and its derivatives.Solid State Commun., 2015, 222: 9-13. |
[51] | LANE N J, BARSOUM M W, RONDINELLI J M.Electronic structure and magnetism in two-dimensional hexagonal 5d transition metal carbides, Tan+1Cn (n=1, 2, 3).Europhys. Lett., 2013, 101(5): 1-5. |
[52] | KURTOGLU M, NAGUIB M, GOGOTSI Y, et al.First principles study of two-dimensional early transition metal carbides.Mrs Communications, 2012, 2(4): 133-137. |
[53] | LING Z, REN C E, ZHAO M Q, et al.Flexible and conductive MXene films and nanocomposites with high capacitance.Proc. Natl. Acad. Sci. U. S. A., 2014, 111(47): 16676-16681. |
[54] | DIKIN D A, STANKOVICH S, ZIMNEY E J, et al.Preparation and characterization of graphene oxide paper.Nature, 2007, 448(7152): 457-460. |
[55] | LI Z, XU J, O'BYRNE J P, et al. Freestanding bucky paper with high strength from multi-wall carbon nanotubes.Mater. Chem. Phys., 2012, 135(2/3): 921-927. |
[56] | SUN D D, HU Q K, CHEN J F, et al. First principles calculations of the relative stability, structure and electronic properties of two dimensional metal carbides and nitrides. Key Eng. Mater., 2014, 602-603: 527-531. |
[57] | KHAZAEI M, ARAI M, SASAKI T, et al.The effect of the interlayer element on the exfoliation of layered MoAC (A = Al, Si, P, Ga, Ge, As or In) MAX phases into two-dimensional MoC nanosheets.Sci. Technol. Adv. Mat., 2014, 15(1): 1-7. |
[58] | NAGUIB M, HALIM J, LU J, et al.New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries.ChemInform, 2013, 135(43): 15966-15969. |
[59] | WANG L, YUAN L, CHEN K, et al.Loading actinides in multilayered structures for nuclear waste treatment: the first case study of uranium capture with vanadium carbide MXene.ACS Appl. Mater. Inter., 2016, 8(25): 16396-16403. |
[60] | CHANG F, LI C, YANG J, et al.Synthesis of a new graphene-like transition metal carbide by de-intercalating Ti3AlC2.Mater. Lett., 2013, 109(10): 295-298. |
[61] | SUN D, WANG M, LI Z, et al.Two-dimensional Ti3C2 as anode material for Li-ion batteries.Electrochem. Commun., 2014, 47(10): 80-83. |
[62] | MASHTALIR O, NAGUIB M, DYATKIN B, et al.Kinetics of aluminum extraction from Ti3AlC2 in hydrofluoric acid.Mater. Chem. Phys., 2013, 139(1): 147-152. |
[63] | HALIM J, LUKATSKAYA M R, COOK K M, et al.Transparent conductive two-dimensional titanium carbide epitaxial thin films.Chem. Mater., 2014, 26(7): 2374-2381. |
[64] | MASHTALIR O, NAGUIB M, MOCHALIN V N, et al.Intercalation and delamination of layered carbides and carbonitrides.Nat. Commun., 2013, 4(2): 216-219. |
[65] | NAGUIB M, UNOCIC R R, ARMSTRONG B L, et al.Large-scale delamination of multi-layers transition metal carbides and carbonitrides “Mxenes”.Dalton Trans., 2015, 44(20): 9353-9358. |
[66] | SI Y, SAMULSKI E T.Synthesis of water soluble graphene.Nano Lett., 2008, 8(6): 1679-1682. |
[67] | ORLER E B, YONTZ D J, MOORE R B.Sulfonation of syndiotactic polystyrene for model semicrystalline ionomer investigations.Macromolecules, 2002, 21(2): 73-82. |
[68] | LIU F, SUN J, ZHU L, et al.Sulfated graphene as an efficient solid catalyst for acid-catalyzed liquid reactions.J. Mater. Chem., 2012, 22(12): 5495-5502. |
[69] | NAGUIB M, COME J, DYATKIN B, et al.MXene: a promising transition metal carbide anode for lithium-ion batteries.Electrochem. Commun., 2012, 16(1): 61-64. |
[70] | KIM S J, NAGUIB M, ZHAO M, et al.High mass loading, binder-free MXene anodes for high areal capacity Li-ion batteries.Electrochim. Acta, 2015, 163: 246-251. |
[71] | LUKATSKAYA M R, OLHA M, REN C E, et al.Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide.Science, 2013, 341(6153): 1502-1505. |
[72] | YOON Y, LEE K, LEE H.Low-dimensional carbon and MXene-based electrochemical capacitor electrodes.Nanotechnology, 2016, 27(17): 172001-172021. |
[73] | DING B, WANG J, WANG Y, et al.A two-step etching route to ultrathin carbon nanosheets for high performance electrical double layer capacitors.Nanoscale, 2016, 8(21): 11136-11142. |
[74] | DALL'AGNESE Y, LUKATSKAYA M R, COOK K M, et al. High capacitance of surface-modified 2D titanium carbide in acidic electrolyte.Electrochem. Commun., 2014, 48(48): 118-122. |
[75] | XIAOHONG X, SIGUO C, WEI D, et al.An extraordinarily stable catalyst: Pt NPs supported on two-dimensional Ti3C2X2 (X = OH, F) nanosheets for oxygen reduction reaction.Chem. Commun., 2013, 49(86): 10112-10114. |
[76] | LI X, FAN G, ZENG C.Synthesis of ruthenium nanoparticles deposited on graphene-like transition metal carbide as an effective catalyst for the hydrolysis of sodium borohydride.Int. J. Hydrogen Energy, 2014, 39(27): 14927-14934. |
[77] | GAO Y, WANG L, LI Z, et al.Preparation of MXene-Cu2O nanocomposite and effect on thermal decomposition of ammonium perchlorate.Solid State Sci., 2014, 35(9): 62-65. |
[78] | ENYASHIN A N, IVANOVSKII A L.Structural and electronic properties and stability of MXenes Ti2C and Ti3C2 functionalized by methoxy groups.J. Phys. Chem. C, 2013, 117(26): 13637-13643. |
[79] | MASHTALIR O, COOK K M, MOCHALIN V N, et al.Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media.J. Mater. Chem., 2014, 2(35): 14334-14338. |
[80] | GAO Y, WANG L, ZHOU A, et al.Hydrothermal synthesis of TiO2/Ti3C2 nanocomposites with enhanced photocatalytic activity.Mater. Lett., 2015, 150: 62-64. |
[81] | HU QIANKU, SUN DANDAN, WU QINGHUA, et al.MXene: a new family of promising hydrogen storage medium.J. Phys. Chem. A, 2013, 117(51): 14253-14260. |
[82] | SUN DAN-DAN, HU QIAN-KU, LI ZHENG-YANG, et al.Research progress of new two-dimensional MXene crystals.Journal of Synthetic Crystals, 2014, 43(11): 2950-2956. |
[83] | 霍苗. 二维MXene衍生物对NaAlH4体系吸/放氢性能的影响. 河北: 河北师范大学硕士学位论文, 2016. |
[84] | YANG J, CHEN B, SONG H, et al.ChemInform abstract: Synthesis, characterization, and tribological properties of two-dimensional Ti3C2.Cryst. Res. Technol., 2014, 49(11): 926-932. |
[85] | WANG F, YANG C H, DUAN C Y, et al.An organ-like titanium carbide material (MXene) with multilayer structure encapsulating hemoglobin for a mediator-free biosensor.J. Electrochem. Soc., 2015, 162(1): 16-21. |
[86] | LIU H, DUAN C, YANG C, et al.A novel nitrite biosensor based on the direct electrochemistry of hemoglobin immobilized on MXene-Ti3C2.Sens. Actuators, B, 2015, 218: 60-66. |
[1] | DING Ling, JIANG Rui, TANG Zilong, YANG Yunqiong. MXene: Nanoengineering and Application as Electrode Materials for Supercapacitors [J]. Journal of Inorganic Materials, 2023, 38(6): 619-633. |
[2] | WANG Shiyi, FENG Aihu, LI Xiaoyan, YU Yun. Pb (II) Adsorption Process of Fe3O4 Supported Ti3C2Tx [J]. Journal of Inorganic Materials, 2023, 38(5): 521-528. |
[3] | NIU Jiaxue, SUN Si, LIU Pengfei, ZHANG Xiaodong, MU Xiaoyu. Copper-based Nanozymes: Properties and Applications in Biomedicine [J]. Journal of Inorganic Materials, 2023, 38(5): 489-502. |
[4] | XIAO Meixia, LI Miaomiao, SONG Erhong, SONG Haiyang, LI Zhao, BI Jiaying. Halogenated Ti3C2 MXene as High Capacity Electrode Material for Li-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(6): 660-668. |
[5] | DING Jianxiang, ZHANG Kaige, LIU Dongming, ZHENG Wei, ZHANG Peigen, SUN Zhengming. Ag-based Electrical Contact Material Reinforced by Ti3AlC2 Ceramic and Its Derivative Ti3C2Tx [J]. Journal of Inorganic Materials, 2022, 37(5): 567-573. |
[6] | BAI Zhiqiang, ZHAO Lu, BAI Yunfeng, FENG Feng. Research Progress on MXenes: Preparation, Property and Application in Tumor Theranostics [J]. Journal of Inorganic Materials, 2022, 37(4): 361-375. |
[7] | LIU Kai, SUN Ce, SHI Yusheng, HU Jiaming, ZHANG Qingqing, SUN Yunfei, ZHANG Song, TU Rong, YAN Chunze, CHEN Zhangwei, HUANG Shangyu, SUN Huajun. Current Status and Prospect of Additive Manufacturing Piezoceramics [J]. Journal of Inorganic Materials, 2022, 37(3): 278-288. |
[8] | LEI Weiyan, WANG Yue, WU Shiran, SHI Dongxin, SHEN Yi, LI Fengfeng. 2D Nanomaterials from Group VA Single-element: Research Progress in Biomedical Fields [J]. Journal of Inorganic Materials, 2022, 37(11): 1181-1191. |
[9] | HUANG Hui, CHEN Yu. Materdicine and Medmaterial [J]. Journal of Inorganic Materials, 2022, 37(11): 1151-1169. |
[10] | SU Li, YANG Jianping, LAN Yue, WANG Lianjun, JIANG Wan. Interface Design of Iron Nanoparticles for Environmental Remediation [J]. Journal of Inorganic Materials, 2021, 36(6): 561-569. |
[11] | FAN Hongwei, LI Kerui, HOU Chengyi, ZHANG Qinghong, LI Yaogang, WANG Hongzhi. Multi-functional Electrochromic Devices: Integration Strategies Based on Multiple and Single Devices [J]. Journal of Inorganic Materials, 2021, 36(2): 115-127. |
[12] | LI Neng,KONG Zhouzhou,CHEN Xingzhu,YANG Yufei. Research Progress of Novel Two-dimensional Materials in Photocatalysis and Electrocatalysis [J]. Journal of Inorganic Materials, 2020, 35(7): 735-747. |
[13] | JIA Hanxiang, CAO Xun, JIN Pingshi. Advances in Inorganic All-solid-state Electrochromic Materials and Devices [J]. Journal of Inorganic Materials, 2020, 35(5): 511-524. |
[14] | WANG Pengren, GOU Yanzi, WANG Hao. Third Generation SiC Fibers for Nuclear Applications [J]. Journal of Inorganic Materials, 2020, 35(5): 525-531. |
[15] | LIU Ziyang, GENG Zhen, LI Zhaoyang. Preparing Biomedical CaCO3/HA Composite with Oyster Shell [J]. Journal of Inorganic Materials, 2020, 35(5): 601-607. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||