Journal of Inorganic Materials ›› 2017, Vol. 32 ›› Issue (3): 331-336.DOI: 10.15541/jim20160288
• Orginal Article • Previous Articles
WU Qing-Feng1, CUI Ya-Juan2, ZHANG Hai-Long3, ZHOU Yi1, LAN Li1, WANG Jian-Li2, CHEN Yao-Qiang1,2
Received:
2016-05-03
Published:
2017-03-20
Online:
2017-02-24
About author:
WU Qing-Feng(1991–), male, candidate of master degree. E-mail: wqfv@outlook.com
Supported by:
CLC Number:
WU Qing-Feng, CUI Ya-Juan, ZHANG Hai-Long, ZHOU Yi, LAN Li, WANG Jian-Li, CHEN Yao-Qiang. Preparation of Ceria-zirconia Mixed Oxides with Improved Thermal Stability for Three-way Catalysts by a Modified Co-precipitation Method[J]. Journal of Inorganic Materials, 2017, 32(3): 331-336.
Samples | Phase composition | Lattice parameter/nm | Crystallite size/nm |
---|---|---|---|
CZ-0-d | Cubic | 0.5421 | 3.7 |
CZ-20-d | Cubic | 0.5422 | 3.8 |
CZ-40-d | Cubic | 0.5380 | 4.0 |
CZ-80-d | Cubic | 0.5380 | 4.3 |
CZ-0-f | Cubic | 0.5274 | 4.8 |
CZ-20-f | Cubic | 0.5284 | 4.8 |
CZ-40-f | Cubic | 0.5271 | 5.0 |
CZ-80-f | Cubic | 0.5291 | 4.9 |
CZ-0-a | Cubic + tetragonal | 0.5258a | 21.2 |
CZ-20-a | Cubic + tetragonal | 0.5261a | 19.3 |
CZ-40-a | Cubic + tetragonal | 0.5286a | 17.2 |
CZ-80-a | Cubic | 0.5292 | 14.5 |
Table 1 The crystalline phases, lattice parameters and crystallite sizes of the precipitates, fresh samples and aged samples
Samples | Phase composition | Lattice parameter/nm | Crystallite size/nm |
---|---|---|---|
CZ-0-d | Cubic | 0.5421 | 3.7 |
CZ-20-d | Cubic | 0.5422 | 3.8 |
CZ-40-d | Cubic | 0.5380 | 4.0 |
CZ-80-d | Cubic | 0.5380 | 4.3 |
CZ-0-f | Cubic | 0.5274 | 4.8 |
CZ-20-f | Cubic | 0.5284 | 4.8 |
CZ-40-f | Cubic | 0.5271 | 5.0 |
CZ-80-f | Cubic | 0.5291 | 4.9 |
CZ-0-a | Cubic + tetragonal | 0.5258a | 21.2 |
CZ-20-a | Cubic + tetragonal | 0.5261a | 19.3 |
CZ-40-a | Cubic + tetragonal | 0.5286a | 17.2 |
CZ-80-a | Cubic | 0.5292 | 14.5 |
Samples | Specific surface/(m2·g-1) | Pore volume/(cm3·g-1) | Average pore radius/nm |
---|---|---|---|
CZ-0-f | 118 | 0.25 | 4.2 |
CZ-20-f | 137 | 0.27 | 3.9 |
CZ-40-f | 120 | 0.27 | 4.5 |
CZ-80-f | 129 | 0.30 | 4.6 |
CZ-0-a | 16 | 0.08 | 10.7 |
CZ-20-a | 15 | 0.07 | 9.3 |
CZ-40-a | 22 | 0.11 | 10.2 |
CZ-80-a | 29 | 0.13 | 9.0 |
Table 2 Textural properties of fresh and aged samples
Samples | Specific surface/(m2·g-1) | Pore volume/(cm3·g-1) | Average pore radius/nm |
---|---|---|---|
CZ-0-f | 118 | 0.25 | 4.2 |
CZ-20-f | 137 | 0.27 | 3.9 |
CZ-40-f | 120 | 0.27 | 4.5 |
CZ-80-f | 129 | 0.30 | 4.6 |
CZ-0-a | 16 | 0.08 | 10.7 |
CZ-20-a | 15 | 0.07 | 9.3 |
CZ-40-a | 22 | 0.11 | 10.2 |
CZ-80-a | 29 | 0.13 | 9.0 |
Samples | Below 3 nm | Between 3 nm and 6 nm | Above 6 nm |
---|---|---|---|
CZ-0-f | 37.6% | 32.7% | 29.7% |
CZ-20-f | 39.0% | 31.1% | 29.9% |
CZ-40-f | 30.1% | 40.6% | 29.3% |
CZ-80-f | 22.8% | 47.8% | 29.4% |
Table 3 Statistical data of the proportion of pore radius for pore size distribution of fresh samples
Samples | Below 3 nm | Between 3 nm and 6 nm | Above 6 nm |
---|---|---|---|
CZ-0-f | 37.6% | 32.7% | 29.7% |
CZ-20-f | 39.0% | 31.1% | 29.9% |
CZ-40-f | 30.1% | 40.6% | 29.3% |
CZ-80-f | 22.8% | 47.8% | 29.4% |
Samples | Below 6 nm | Between 6 nm and 16 nm | Above 16 nm |
---|---|---|---|
CZ-0-a | 10.0% | 43.7% | 46.3% |
CZ-20-a | 26.3% | 49.6% | 24.1% |
CZ-40-a | 14.3% | 63.0% | 22.7% |
CZ-80-a | 12.9% | 77.5% | 9.6% |
Table 4 Statistical data of the proportion of pore radius for pore size distribution of aged samples
Samples | Below 6 nm | Between 6 nm and 16 nm | Above 16 nm |
---|---|---|---|
CZ-0-a | 10.0% | 43.7% | 46.3% |
CZ-20-a | 26.3% | 49.6% | 24.1% |
CZ-40-a | 14.3% | 63.0% | 22.7% |
CZ-80-a | 12.9% | 77.5% | 9.6% |
Samples | Precipitates/nm | Fresh samples/nm | Aged samples/nm |
---|---|---|---|
CZ-0 | 3.3 | 4.8 | 25.6 |
CZ-80 | 4.3 | 5.1 | 16.3 |
Table 5 The average grain sizes of CZ-0 and CZ-80 calculated from TEM results
Samples | Precipitates/nm | Fresh samples/nm | Aged samples/nm |
---|---|---|---|
CZ-0 | 3.3 | 4.8 | 25.6 |
CZ-80 | 4.3 | 5.1 | 16.3 |
Catalysts | T50/ ℃ | T90/ ℃ | ||||
---|---|---|---|---|---|---|
C3H8 | NO | CO | C3H8 | NO | CO | |
Pd/CZ-0-f | 273 | 180 | 163 | 325 | 230 | 219 |
Pd/CZ-0-a | 358 | 266 | 249 | 420 | 298 | 293 |
Pd/CZ-80-f | 270 | 180 | 167 | 326 | 228 | 228 |
Pd/CZ-80-a | 332 | 258 | 241 | 400 | 290 | 272 |
Table 6 Light-off temperatures (T50) and complete conversion temperatures (T90) for C3H8, NO and CO over fresh and aged catalysts.
Catalysts | T50/ ℃ | T90/ ℃ | ||||
---|---|---|---|---|---|---|
C3H8 | NO | CO | C3H8 | NO | CO | |
Pd/CZ-0-f | 273 | 180 | 163 | 325 | 230 | 219 |
Pd/CZ-0-a | 358 | 266 | 249 | 420 | 298 | 293 |
Pd/CZ-80-f | 270 | 180 | 167 | 326 | 228 | 228 |
Pd/CZ-80-a | 332 | 258 | 241 | 400 | 290 | 272 |
[1] | KAŠPAR J, FORNASIERO P, HICKEY N. Automotive catalytic converters: current status and some perspectives.Catal. Today, 2003, 77(4): 419-449. |
[2] | MATSUMOTO S.Recent advances in automobile exhaust catalysts.Catal. Today, 2004, 90(3/4): 183-190. |
[3] | KAŠPAR J, FORNASIERO P. Nanostructured materials for advanced automotive de-pollution catalysts.Solid State Chem., 2003, 171(1/2): 19-29. |
[4] | FARRAUTO R J, HECK R M.Catalytic converters: state of the art and perspectives.Catal. Today, 1999, 51(3/4): 351-360. |
[5] | HECK R M, FARRAUTO R J.Automobile exhaust catalysts.Appl. Catal. A: Gen., 2001, 221(1/2): 443-457. |
[6] | KAŠPAR J, FORNASIERO P, GRAZIANI M. Use of CeO2-based oxides in the three-way catalysis.Catal. Today, 1999, 50(2): 285-298. |
[7] | MONTE R D, KAŠPAR J. Heterogeneous environmental catalysis-a gentle art: CeO2-ZrO2 mixed oxides as a case history.Catal. Today, 2005, 100(1/2): 27-35. |
[8] | SHIGAPOV A N, GRAHAM G W, MCCABE R W, et al. The preparation of high-surface area, thermally-stable, metal-oxide catalysts and supports by a cellulose templating approach.Appl. Catal. A: Gen., 2001, 210(1/2): 287-300. |
[9] | BUMAJDAD A, ZAKI M I, EASTOE J, et al.Microemulsion- based synthesis of CeO2 powders with high surface area and high- temperature stabilities.Langmuir, 2004, 20(25): 11223-11233. |
[10] | FUENTES R O, BAKER R T.Synthesis of nanocrystallineCeO2-ZrO2 solid solutions by a citrate complexation route: a thermochemical and structural study.J. Phys. Chem. C, 2009, 113(3): 914-924. |
[11] | NAKATANI T, OKAMOTO H, OTA R.Preparation of CeO2-ZrO2 mixed oxide powders by the coprecipitation method for the purification catalysts of automotive emission.J. Sol-Gel Science and Technology, 2003, 26(1): 859-863. |
[12] | KAŠPAR J, FORNASIERO P, BALDUCCI G, et al. Effect of ZrO2 content on textural and structural properties of CeO2-ZrO2 solid solutions made by citrate complexation route.Inorg. Chim. Acta, 2003, 349(5): 217-226. |
[13] | TROVARELLI A, ZAMAR F, LLORCA J, et al.Nanophase fluorite-structured CeO2-ZrO2 catalysts prepared by high-energy mechanical milling.J. Catal., 1997, 169(2): 490-502. |
[14] | BOARO M, VICARIO M, LEITENBURG C D, et al.The use of temperature-programmed and dynamic/transient methods in catalysis: characterization of ceria-based.Catal. Today, 2003, 77(4): 407-417. |
[15] | FORNISIERO P, MONTE R D, RAO G R, et al.Rh-loaded CeO2-ZrO2 solid solutions as highly efficient oxygen exchangers: dependence of the reduction behavior and the oxygen storage capacity on the structural properties.J. Catal., 1995, 151(1): 168-177. |
[16] | WENG X, PERSTON B, WANG X Z, et al.Synthesis and characterization of doped nano-sized ceria-zirconia solid solutions.Appl. Catal. B: Environ., 2009, 90(3/4): 405-415. |
[17] | SUN Y, SERMON P A.Surface reactivity and bulk properties of ZrO2 Part 2-Importance of homogeneity in the stabilisation of high surface area CeO2-ZrO2 aerogels.J. Mater. Chem, 1996, 6(6): 1025-1029. |
[18] | MONTE R D, KAŠPAR J, BRADSHAW H, et al. A rationale for the development of thermally stable nanostructured CeO2-ZrO2- containing mixed oxides.J. Rare Earths, 2008, 26(2): 136-140. |
[19] | ZHOU Y, LAN L, GONG M, et al.Modification of the thermal stability of doped CeO2-ZrO2 mixed oxides with the addition of triethylamine and its application as a Pd-only three-way catalyst.J. Mater. Sci., 2016, 51(9): 4283-4295. |
[1] | LIU Ziyu, TOCI Guido, PIRRI Angela, PATRIZI Barbara, FENG Yagang, CHEN Xiaopu, HU Dianjun, TIAN Feng, WU Lexiang, VANNINI Matteo, LI Jiang. Fabrication and Optical Property of Nd:Lu2O3 Transparent Ceramics for Solid-state Laser Applications [J]. Journal of Inorganic Materials, 2021, 36(2): 210-216. |
[2] | HUANG Xinyou, LIU Yumin, LIU Yang, LI Xiaoying, FENG Yagang, CHEN Xiaopu, CHEN Penghui, LIU Xin, XIE Tengfei, LI Jiang. Fabrication and Characterizations of Yb:YAG Transparent Ceramics Using Alcohol-water Co-precipitation Method [J]. Journal of Inorganic Materials, 2021, 36(2): 217-224. |
[3] | LI Xiao-Ying, LIU Qiang, HU Ze-Wang, JIANG Nan, SHI Yun, LI Jiang. Influence of Ammonium Hydrogen Carbonate to Metal Ions Molar Ratio on Co-precipitated Nanopowders for TGG Transparent Ceramics [J]. Journal of Inorganic Materials, 2019, 34(7): 791-797. |
[4] | WEI Jia-Bei, TOCI Guido, PIRRI Angela, PATRIZI Barbara, FENG Ya-Gang, VANNINI Matteo, LI Jiang. Fabrication and Property of Yb:CaF2 Laser Ceramics from Co-precipitated Nanopowders [J]. Journal of Inorganic Materials, 2019, 34(12): 1341-1348. |
[5] | ZHAN Jing, LU Er-Ju, CAI Meng, MA Ya-Lin, ZHANG Chuan-Fu. Controlled Synthesis and Electrocatalytic Performance of Porous Nickel Cobaltite Rods [J]. Journal of Inorganic Materials, 2017, 32(1): 11-17. |
[6] | ZHANG Ye, CHEN Xian-Qiang, QIN Hai-Ming, LUO Zhao-Hua, JIANG Jun, JIANG Hao-Chuan. Fabrication of Ce-doped Gd3(Al, Ga)5O12 Powders Using Co-precipitation Method [J]. Journal of Inorganic Materials, 2016, 31(10): 1151-1156. |
[7] | QU Ting, HUANG Qiang, ZHAO Zhen-Bo. Preparation and Visible Light Responsive Photocatalytic Activity of Bi2MoO6/Ni-Fe LDH Composites [J]. Journal of Inorganic Materials, 2015, 30(8): 825-832. |
[8] | LI Zhong, HONG Jian-He, HE Gang, Lü Lu. Effect of FePO4 Coating on Performance of Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Material for Li-ion Battery [J]. Journal of Inorganic Materials, 2015, 30(2): 129-134. |
[9] | PENG Cheng, ZHANG Chu-Xin, L? Ming, LI Zhi-Hong, WU Jian-Qing. Co-precipitation Synthesis and Thermal Stability of Zircon Encapsulated Carbon Black [J]. Journal of Inorganic Materials, 2013, 28(8): 847-852. |
[10] | WANG Kai-Feng, LIU Wei, WANG Jin-Shu. Influence of Aluminates Composition on Ba-W Cathode Characteristics [J]. Journal of Inorganic Materials, 2013, 28(12): 1354-1358. |
[11] | CUI Yun-Tao, WANG Jin-Shu, LIU Wei, WANG Xi, WANG Kai-Feng. Fabrication of Aluminate for Scandia Doped Dispenser Cathode and Emission Property [J]. Journal of Inorganic Materials, 2012, 27(5): 480-484. |
[12] | LIU Chao-Feng, ZHANG Hong, XIA Jun-Xiao, Li Gen, LI Zhi-Cheng. Fabrication and Conductivity of La9.33Si6O26-based Composite Oxygen-ionic Conductor [J]. Journal of Inorganic Materials, 2011, 26(10): 1043-1048. |
[13] | CHEN Jiao, HUANG Xiao-Gu, HAN Peng-De, WANG li-Xi, ZHANG Qi-Tu. Preparation and Multiple-band Stealth Properties of Al/Cr2O3 Composite Particles [J]. Journal of Inorganic Materials, 2010, 25(12): 1298-1302. |
[14] | YANG Yu-Ling, LI Xue-Ming, FENG Wen-Lin, LI Wu-Lin, TAO Chuan-Yi. Synthesis and Characteristic of CaMoO4:Eu3+ Red Phosphor for W-LED by Co-precipitation [J]. Journal of Inorganic Materials, 2010, 25(10): 1015-1019. |
[15] | LI Xue-Ming,XIANG Xing,YANG Wen-Jing,LI Wu-Lin,KONG Ling-Feng. Synthesis and Characterization of (Y,Bi)AG∶Eu3+ Red Phosphor by Coprecipitation Method [J]. Journal of Inorganic Materials, 2009, 24(5): 1059-1063. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||