Journal of Inorganic Materials ›› 2015, Vol. 30 ›› Issue (11): 1131-1138.DOI: 10.15541/jim20150214
• Orginal Article • Previous Articles Next Articles
YANG Ying, GAO Jing, CUI Jia-Rui, GUO Xue-Yi
Received:
2015-05-06
Revised:
2015-07-06
Published:
2015-11-20
Online:
2015-10-20
About author:
YANG Ying. E-mail: muyicaoyang@csu.edu.cn
Supported by:
CLC Number:
YANG Ying, GAO Jing, CUI Jia-Rui, GUO Xue-Yi. Research Progress of Perovskite Solar Cells[J]. Journal of Inorganic Materials, 2015, 30(11): 1131-1138.
Perovskite light absorber | Compact nanocrystalline layer | Hole transport layer | Counter electrode | η/% | Reference |
---|---|---|---|---|---|
CH3NH3PbI3 | TiO2 | P3HT | Au | 4.24 | [20] |
CH3NH3PbI3 | TiO2 | D-π-A conjugated copolymer P | Au | 6.64 | [20] |
CH3NH3PbI3 | TiO2 | - | Pt | 6.54 | [21] |
CH3NH3PbI3 | TiO2 | PFF | Au | 9.40 | [23] |
CH3NH3PbI3 | TiO2 | spiro-OMeTAD | Au | 15.0 | [3] |
CH3NH3PbI2Cl | TiO2+Al2O3 | spiro-OMeTAD | Ag | 12.3 | [26] |
CH3NH3PbI3-xClx | TiO2 | P3HT | Au | 9.2 | [25] |
CH3NH3PbI3-xClx | TiO2 | spiro-OMeTAD | Au | 19.3 | [5] |
CH3NH3Pb(I1-xBrx)3 | TiO2 | PTAA | Au | 12.3 | [30] |
(CH3NH3)0.6(HC(NH2)2)0.4 Pb3 | TiO2 | spiro-OMeTAD | Au | 14.9 | [21] |
Table 1 Photoelectric conversion efficiency of perovskite solar cells with different light absorber materials
Perovskite light absorber | Compact nanocrystalline layer | Hole transport layer | Counter electrode | η/% | Reference |
---|---|---|---|---|---|
CH3NH3PbI3 | TiO2 | P3HT | Au | 4.24 | [20] |
CH3NH3PbI3 | TiO2 | D-π-A conjugated copolymer P | Au | 6.64 | [20] |
CH3NH3PbI3 | TiO2 | - | Pt | 6.54 | [21] |
CH3NH3PbI3 | TiO2 | PFF | Au | 9.40 | [23] |
CH3NH3PbI3 | TiO2 | spiro-OMeTAD | Au | 15.0 | [3] |
CH3NH3PbI2Cl | TiO2+Al2O3 | spiro-OMeTAD | Ag | 12.3 | [26] |
CH3NH3PbI3-xClx | TiO2 | P3HT | Au | 9.2 | [25] |
CH3NH3PbI3-xClx | TiO2 | spiro-OMeTAD | Au | 19.3 | [5] |
CH3NH3Pb(I1-xBrx)3 | TiO2 | PTAA | Au | 12.3 | [30] |
(CH3NH3)0.6(HC(NH2)2)0.4 Pb3 | TiO2 | spiro-OMeTAD | Au | 14.9 | [21] |
Deposition methods | Perovskite photoactive absorber | Processing parameters | η/% | Reference |
---|---|---|---|---|
One-step | CH3NH3PbI3 | CH3NH3PbI3 film: spin at 3000 r/min for 20 s, dried at 40℃ for 3 min and 100℃ for 5 min | 7.5 | [33] |
One-step | CH3NH3PbI2 | CH3NH3PbI3 film: spin at 2000 r/min for 60 s dried at 105℃ for 45 min | 7.2 | [38] |
One-step | CH3NH3PbI3-xClx | CH3NH3I:PbCl2 = 3:1, spin at 2000 r/min for 30 s dried at 90℃ for 60 min and 100℃ for 25 min | 19.3 | [5] |
Two-step | CH3NH3PbI3 | PbI2 film: spin at 2000 r/min for 30 s dried at 110℃ for 15 min CH3NH3I powder is spread on PbI2 film, dried at 150℃ | 12.1 | [34] |
Two-step | CH3NH3PbI3 | PbI2 film: spin at 3000 r/min for 20 s dried at 40℃ for 3 min and 100℃ for 5 min CH3NH3I film: spin at 4000 r/min for 20 s dried at 105℃ for 5 min | 13.9 | [33] |
Dual-source vapor deposition | CH3NH3PbI3-xClx | CH3NH3I:PbCl2 = 3.5:1 CH3NH3I film : dried at 120℃ for 5 min PbCl2 film : dried at 325℃ for 5 min | 15 | [35] |
Table 2 Processing parameters for preparing perovskite photoactive absorber thin film and corresponding photoelectric conversion efficiency
Deposition methods | Perovskite photoactive absorber | Processing parameters | η/% | Reference |
---|---|---|---|---|
One-step | CH3NH3PbI3 | CH3NH3PbI3 film: spin at 3000 r/min for 20 s, dried at 40℃ for 3 min and 100℃ for 5 min | 7.5 | [33] |
One-step | CH3NH3PbI2 | CH3NH3PbI3 film: spin at 2000 r/min for 60 s dried at 105℃ for 45 min | 7.2 | [38] |
One-step | CH3NH3PbI3-xClx | CH3NH3I:PbCl2 = 3:1, spin at 2000 r/min for 30 s dried at 90℃ for 60 min and 100℃ for 25 min | 19.3 | [5] |
Two-step | CH3NH3PbI3 | PbI2 film: spin at 2000 r/min for 30 s dried at 110℃ for 15 min CH3NH3I powder is spread on PbI2 film, dried at 150℃ | 12.1 | [34] |
Two-step | CH3NH3PbI3 | PbI2 film: spin at 3000 r/min for 20 s dried at 40℃ for 3 min and 100℃ for 5 min CH3NH3I film: spin at 4000 r/min for 20 s dried at 105℃ for 5 min | 13.9 | [33] |
Dual-source vapor deposition | CH3NH3PbI3-xClx | CH3NH3I:PbCl2 = 3.5:1 CH3NH3I film : dried at 120℃ for 5 min PbCl2 film : dried at 325℃ for 5 min | 15 | [35] |
Structure of the perovskite solar cell | Hole transport layer | J/(mA·cm-2) | Voc /V | η/% | Reference |
---|---|---|---|---|---|
TCO/TiO2/CH3NH3PbI3-xClx/metal | none | 22.20 | 1.030 | 17.90 | [48] |
FTO/TiO2/CH3NH3PbI3/Au | none | 7.38 | 0.699 | 3.30 | [27] |
FTO/TiO2/CH3NH3PbI3/Al2O3/Au | none | 10.67 | 0.789 | 5.07 | [27] |
FTO/TiO2/ CH3NH3PbI3/Au | none | 17.80 | 0.905 | 10.49 | [53] |
ITO/TiO2/ CH3NH3PbI2Cl/Au | P3HT | 21.30 | 0.900 | 10.80 | [14] |
FTO/TiO2/ CH3NH3PbI3/Au | Spiro-OMeTAD | 16.70 | 0.855 | 8.40 | [44] |
FTO/TiO2/ CH3NH3PbI3/Au | PTAA | 16.50 | 0.997 | 12.00 | [44] |
FTO/TiO2/CH3NH3PbI3-xClx/Au | Spiro-OMeTAD | 12±3 | 0.84±0.03 | 8.60 | [24] |
FTO/TiO2/CH3NH3PbI3-xClx/Au | P3HT | 12±2 | 0.93±0.06 | 9.30 | [32] |
FTO/TiO2/CH3NH3PbI3/Au | CuI | 17.80 | 0.550 | 6.00 | [45] |
FTO/TiO2/CH3NH3PbI3/Au | CuSCN | 19.70 | 1.016 | 12.40 | [46] |
FTO/ CH3NH3PbI3-xClx/Au | Spiro-OMeTAD | 21.97 | 1.060 | 14.14 | [47] |
Table 3 Effect of hole transport materials on perovskite solar cells
Structure of the perovskite solar cell | Hole transport layer | J/(mA·cm-2) | Voc /V | η/% | Reference |
---|---|---|---|---|---|
TCO/TiO2/CH3NH3PbI3-xClx/metal | none | 22.20 | 1.030 | 17.90 | [48] |
FTO/TiO2/CH3NH3PbI3/Au | none | 7.38 | 0.699 | 3.30 | [27] |
FTO/TiO2/CH3NH3PbI3/Al2O3/Au | none | 10.67 | 0.789 | 5.07 | [27] |
FTO/TiO2/ CH3NH3PbI3/Au | none | 17.80 | 0.905 | 10.49 | [53] |
ITO/TiO2/ CH3NH3PbI2Cl/Au | P3HT | 21.30 | 0.900 | 10.80 | [14] |
FTO/TiO2/ CH3NH3PbI3/Au | Spiro-OMeTAD | 16.70 | 0.855 | 8.40 | [44] |
FTO/TiO2/ CH3NH3PbI3/Au | PTAA | 16.50 | 0.997 | 12.00 | [44] |
FTO/TiO2/CH3NH3PbI3-xClx/Au | Spiro-OMeTAD | 12±3 | 0.84±0.03 | 8.60 | [24] |
FTO/TiO2/CH3NH3PbI3-xClx/Au | P3HT | 12±2 | 0.93±0.06 | 9.30 | [32] |
FTO/TiO2/CH3NH3PbI3/Au | CuI | 17.80 | 0.550 | 6.00 | [45] |
FTO/TiO2/CH3NH3PbI3/Au | CuSCN | 19.70 | 1.016 | 12.40 | [46] |
FTO/ CH3NH3PbI3-xClx/Au | Spiro-OMeTAD | 21.97 | 1.060 | 14.14 | [47] |
[1] | KOJIMA A, TESHIMA K, SHIRAI Y, et al.Organometal halide perovskites as visible-light sensitizers for photovoltaic cells.Journal of the American Chemical Society., 2009, 131(17): 6050-6051. |
[2] | LEE M M, TEUSCHER J, MIYASAKA T, et al.Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites.Science., 2012, 338(6107): 643-647. |
[3] | BURSCHKA J, PELLET N, MOON S, et al.Sequential deposition as a route to high-performance perovskite-sensitized solar cells.Nature., 2013, 499(7458): 316-319. |
[4] | COUZIN-FRANKEL J.Breakthrough of the year 2013. cancer immunotherapy.Science, 2013, 342(6165): 1432-1433. |
[5] | ZHOU H, CHEN Q, LI G, et al.Interface engineering of highly efficient perovskite solar cells.Science, 2014, 345(6196): 542-546. |
[6] | YANG W S, NOH J H, JEON N J, et al.High-performance photovoltaic perovskite layers fabricated through intramolecular exchange.Science, 2015, 348(6240): 1234-1237. |
[7] | GREEN M A, HO-BAILLIE A, SNAITH H J.The emergence of perovskite solar cells.Nature Photonics, 2014, 8(7): 506-514. |
[8] | 郑莹莹. 有机/无机杂化钙钛矿结构光电功能材料的研究. 浙江大学博士学位论文, 2007. |
[9] | OUYANG M, BAI R, CHEN L, et al.Highly photoconductive copper phthalocyanine-coated titania nanoarrays via secondary deposition.The Journal of Physical Chemistry C, 2008, 112(30): 11250-11256. |
[10] | STRANKS S D, EPERON G E, GRANCINI G, et al.Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber.Science, 2013, 342(6156): 341-344. |
[11] | YANG Y, WANG W.Effects of incorporating PbS quantum dots in perovskite solar cells based on CH3NH3PbI3.Journal of Power Sources, 2015, 293: 577-584. |
[12] | ETGAR L, GAO P, QIN P, et al.A hybrid lead iodide perovskite and lead sulfide QD heterojunction solar cell to obtain a panchromatic response.Journal of Materials Chemistry A, 2014, 2(30): 11586-11590. |
[13] | HU L, WANG W, LIU H, et al.PbS colloidal quantum dots as an effective hole transporter for planar heterojunction perovskite solar cells.Journal of Materials Chemistry A, 2015, 3(2): 515-518. |
[14] | CONINGS B, BAETEN L, DE DOBBELAERE C, et al.Perovskite‐based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach.Advanced Materials, 2014, 26(13): 2041-2046. |
[15] | ABRUSCI A, STRANKS S D, DOCAMPO P, et al.High-performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers.Nano Letters, 2013, 13(7): 3124-3128. |
[16] | WANG J T, BALL J M, BAREA E M, et al.Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells.Nano Letters, 2013, 14(2): 724-730. |
[17] | CHEN Q, ZHOU H, HONG Z, et al.Planar heterojunction perovskite solar cells via vapor-assisted solution process.Journal of the American Chemical Society, 2013, 136(2): 622-625. |
[18] | HEO J H, IM S H, NOH J H, et al.Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors.Nature Photonics, 2013, 7(6): 486-491. |
[19] | DOCAMPO P, BALL J M, DARWICH M, et al.Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates.Nature Communications, 2013, 4: 1-6. |
[20] | NAGARJUNA P, NARAYANASWAMY K, SWETHA T, et al.CH3NH3PbI3 perovskite sensitized solar cells using a D-A copolymer as hole transport material.Electrochimica Acta, 2015, 151: 21-26. |
[21] | IM J, LEE C, LEE J, et al.6.5% efficient perovskite quantum-dot-sensitized solar cell.Nanoscale, 2011, 3(10): 4088-4093. |
[22] | KIM H, MORA-SERO I, GONZALEZ-PEDRO V, et al.Mechanism of carrier accumulation in perovskite thin-absorber solar cells.Nature Communications, 2013, 4: 2242-2248. |
[23] | KIM H, LEE J, YANTARA N, et al.High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer.Nano Letters, 2013, 13(6): 2412-2417. |
[24] | DI GIACOMO F, RAZZA S, MATTEOCCI F, et al.High efficiency CH3NH3PbI(3-x)Clx perovskite solar cells with poly(3- hexylthiophene) hole transport layer.Journal of Power Sources, 2014, 251: 152-156. |
[25] | SANCHEZ R S, GONZALEZ-PEDRO V, LEE J, et al.Slow dynamic processes in lead halide perovskite solar cells. characteristic times and hysteresis.The Journal of Physical Chemistry Letters, 2014, 5(13): 2357-2363. |
[26] | BALL J M, LEE M M, HEY A, et al.Low-temperature processed meso-superstructured to thin-film perovskite solar cells.Energy & Environmental Science, 2013, 6(6): 1739-1743. |
[27] | XING G, MATHEWS N, SUN S, et al.Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3.Science, 2013, 342(6156): 344-347. |
[28] | STRANKS S D, EPERON G E, GRANCINI G, et al.Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber.Science, 2013, 342(6156): 341-344. |
[29] | JEON N J, NOH J H, KIM Y C, et al.Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nature Materials, 2014, 13(9): 897-903. |
[30] | NOH J H, IM S H, HEO J H, et al.Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells.Nano Letters, 2013, 13(4): 1764-1769. |
[31] | PELLET N, GAO P, GREGORI G, et al.mixed‐organic‐cation perovskite photovoltaics for enhanced solar light harvesting.Angewandte Chemie International Edition, 2014, 53(12): 3151-3157. |
[32] | RHEE J H, CHUNG C, DIAU E W.A perspective of mesoscopic solar cells based on metal chalcogenide quantum dots and organometal-halide perovskites.NPG Asia Materials, 2013, 5(10): e61-e68. |
[33] | IM J, KIM H, PARK N.Morphology-photovoltaic property correlation in perovskite solar cells: one-step versus two-step deposition of CH3NH3PbI3.APL Materials, 2014, 2(8): 815101-815108. |
[34] | CHEN Q, ZHOU H, HONG Z, et al.Planar heterojunction perovskite solar cells via vapor-assisted solution process.Journal of the American Chemical Society, 2014, 136(2): 622-625. |
[35] | LIU M, JOHNSTON M B, SNAITH H J.Efficient planar heterojunction perovskite solar cells by vapour deposition.Nature, 2013, 501(7467): 395-398. |
[36] | ERA M, HATTORI T, TAIRA T, et al.Self-organized growth of PbI-based layered perovskite quantum well by dual-source vapor deposition.Chemistry of Materials, 1997, 9(1): 8-10. |
[37] | RAMOS F J, LÓPEZ SANTOS M C, GUILLÉN E, et al. Perovskite solar cells based on nanocolumnar plasma-deposited znO thin films.Chem. Phys. Chem., 2014, 15(6): 1148-1153. |
[38] | CARNIE M J, CHARBONNEAU C, DAVIES M L, et al.A one-step low temperature processing route for organolead halide perovskite solar cells.Chemical Communications, 2013, 49(72): 7893-7895. |
[39] | ETGAR L, GAO P, XUE Z, et al.Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells.Journal of the American Chemical Society, 2012, 134(42): 17396-17399. |
[40] | XIAO M, HUANG F, HUANG W, et al.A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells.Angewandte Chemie, 2014, 126(37): 10056-10061. |
[41] | LIANG P W, LIAO C Y, CHUEH C C, et al.Additive enhanced crystallization of solution- processed perovskite for highly efficient planar-heterojunction solar cells.Advanced Materials, 2014, 26(22): 3748-3754. |
[42] | LIANG K, MITZI D B, PRIKAS M T.Synthesis and characterization of organic-inorganic perovskite thin films prepared using a versatile two-step dipping technique.Chemistry of Materials, 1998, 10(1): 403-411. |
[43] | TAKEOKA Y, FUKASAWA M, MATSUI T, et al. Intercalated formation of two-dimensional and multi-layered perovskites in organic thin films. Chemical Communications, 2005(3): 378-380. |
[44] | HEO J H, IM S H, NOH J H, et al.Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors.Nature Photonics, 2013, 7(6): 486-491. |
[45] | CHRISTIANS J A, FUNG R C, KAMAT P V.An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide.Journal of the American Chemical Society, 2013, 136(2): 758-764. |
[46] | QIN P, TANAKA S, ITO S, et al.Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency.Nature Communications, 2014, 5: 3834-3839. |
[47] | KE W J, FANG G J, WAN J W, et al.Efficient hole-blocking layer-free planar halide perovskite thin-film solar cells.Nature Communications, 2015, doi: 10.1038/ncomms7700. |
[48] | MEI A, LI X, LIU L, et al.A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability.Science, 2014, 345(6194): 295-298. |
[49] | MINEMOTO T, MURATA M.Impact of work function of back contact of perovskite solar cells without hole transport material analyzed by device simulation.Current Applied Physics, 2014, 14(11): 1428-1433. |
[50] | DULLWEBER T, LUNDBERG O, MALMSTRÖM J, et al. Back surface band gap gradings in Cu(In,Ga)Se2 solar cells.Thin Solid Films, 2001, 387(1/2): 11-13. |
[51] | BURGELMAN M, NOLLET P, DEGRAVE S. Modelling polycrystalline semiconductor solar cells. Thin Solid Films, 2000, 361-362: 527-532. |
[52] | SHI JIANG-JIAN, DONG WAN, XU YU-ZHUAN, et al. Enhanced Performance in perovskite organic lead iodide heterojunction solar cells with metal-insulator-semiconductor back contact. Chinese Physics Letters, 2013, 30(12): 1284021-1-5. |
[53] | SHI J, DONG J, LV S, et al. Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: high efficiency and junction property. Applied Physics Letters, 2014, 104(6): 639011-1-4. |
[54] | NOH J H, IM S H, HEO J H, et al.Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells.Nano Letters, 2013, 13(4): 1764-1769. |
[55] | LEIJTENS T, EPERON G E, PATHAK S, et al.Overcoming ultraviolet light instability of sensitized TiO2 with meso- superstructured organometal tri-halide perovskite solar cells.Nature Communications, 2013, 4: 2885-2891. |
[56] | SMITH I C, HOKE E T, SOLIS IBARRA D, et al.A layered hybrid perovskite solar‐cell absorber with enhanced moisture stability.Angewandte Chemie, 2014, 126(42): 11414-11417. |
[57] | LI W, DONG H, WANG L, et al.Montmorillonite as bifunctional buffer layer material for hybrid perovskite solar cells with protection from corrosion and retarding recombination.Journal of Materials Chemistry A, 2014, 2(33): 13587-13592. |
[1] | WEI Xiangxia, ZHANG Xiaofei, XU Kailong, CHEN Zhangwei. Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials [J]. Journal of Inorganic Materials, 2024, 39(9): 965-978. |
[2] | YANG Xin, HAN Chunqiu, CAO Yuehan, HE Zhen, ZHOU Ying. Recent Advances in Electrocatalytic Nitrate Reduction to Ammonia Using Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(9): 979-991. |
[3] | LIU Pengdong, WANG Zhen, LIU Yongfeng, WEN Guangwu. Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(9): 992-1004. |
[4] | HUANG Jie, WANG Liuying, WANG Bin, LIU Gu, WANG Weichao, GE Chaoqun. Research Progress on Modulation of Electromagnetic Performance through Micro-nanostructure Design [J]. Journal of Inorganic Materials, 2024, 39(8): 853-870. |
[5] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
[6] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[7] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[8] | WU Xiaochen, ZHENG Ruixiao, LI Lu, MA Haolin, ZHAO Peihang, MA Chaoli. Research Progress on In-situ Monitoring of Damage Behavior of SiCf/SiC Ceramic Matrix Composites at High Temperature Environments [J]. Journal of Inorganic Materials, 2024, 39(6): 609-622. |
[9] | ZHAO Rida, TANG Sufang. Research Progress of Ceramic Matrix Composites Prepared by Improved Reactive Melt Infiltration through Ceramization of Porous Carbon Matrix [J]. Journal of Inorganic Materials, 2024, 39(6): 623-633. |
[10] | FANG Guangwu, XIE Haoyuan, ZHANG Huajun, GAO Xiguang, SONG Yingdong. Progress of Damage Coupling Mechanism and Integrated Design Method for CMC-EBC [J]. Journal of Inorganic Materials, 2024, 39(6): 647-661. |
[11] | ZHANG Xinghong, WANG Yiming, CHENG Yuan, DONG Shun, HU Ping. Research Progress on Ultra-high Temperature Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(6): 571-590. |
[12] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[13] | LI Zongxiao, HU Lingxiang, WANG Jingrui, ZHUGE Fei. Oxide Neuron Devices and Their Applications in Artificial Neural Networks [J]. Journal of Inorganic Materials, 2024, 39(4): 345-358. |
[14] | BAO Ke, LI Xijun. Chemical Vapor Deposition of Vanadium Dioxide for Thermochromic Smart Window Applications [J]. Journal of Inorganic Materials, 2024, 39(3): 233-258. |
[15] | HU Mengfei, HUANG Liping, LI He, ZHANG Guojun, WU Houzheng. Research Progress on Hard Carbon Anode for Li/Na-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(1): 32-44. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||