[1] |
CLARKE D R, LEVI C G.Materials design for the next generation thermal barrier coatings.Annual Review Mater. Research, 2003, 33: 383-417.
|
[2] |
GURRAPPA I, RAO A S.Thermal barrier coatings for enhanced efficiency of gas turbine engines.Surf. Coat. Technol., 2006, 201(6): 3016-2029.
|
[3] |
MIHM S, DUDA T, GRUNER H, et al.Method and process development of advanced atmospheric plasma spraying for thermal barrier coatings.J. Ther. Spray Technol., 2012, 21(3/4): 400-408.
|
[4] |
GUAN H R, LI M H, SUN X F, et al.Investigation on oxidation and failure of the thermal barrier coating deposition on superalloy.Acta Metallurgica Sinica, 2002, 38(11): 1133-1140.
|
[5] |
PADTURE N P, GELL M, JORDAN E H.Thermal barrier coatings for gas-turbine engine applications.Science, 2002, 296(5566): 280-284.
|
[6] |
EVANSA A G, MUMMA D R, HUTCHINSORB J W, et al.Mechanisms controlling the durability of thermal barrier coatings.Progress in Mater. Sci., 2001, 46(5): 505-553.
|
[7] |
HUA J J, ZHANG L P, LIU Z W, et al.Progress of research on the failure mechanism of thermal barrier coatings.J. Inorg. Mater., 2012, 27(7): 680-686.
|
[8] |
OKAZAKI M, YAMAGISHI S, YAMAZAKI Y, et al.Adhesion strength of ceramic top coat in thermal barrier coatings subjected to thermal cycles: Effects of thermal cycle testing method and environment.International J. Fatigue, 2013, 53: 33-39
|
[9] |
MAGNUS J, HAKAN B.Crack initiation and propagation in air plasma sprayed thermal barrier coatings, testing and mathematical modeling of low cycle fatigue behavior.Mater. Sci. Eng. A, 2004, 379(1/2): 45-57.
|
[10] |
SU L C, ZHANG W X, SUN Y L, et al.Effect of TGO creep on top-coat cracking induced by cyclic displacement instability in a thermal barrier coating system.Surf. Coat. Technol., 2014, 254(15): 410-417.
|
[11] |
MA K K, M J L. Isothermal oxidation behavior of cryomilled NiCrAlY bond coat: homogeneity and growth rate of TGO.Surf. Coat. Technol., 2011, 205(21/22): 5178-5185.
|
[12] |
CHEN W R, WU X, MARPLE B R, et al.Pre-oxidation and TGO growth behavior of an air-plasma-sprayed thermal barrier coating.Surf. Coat. Technol., 2008, 202(16): 3787-3796.
|
[13] |
ZHU D M, MILLER R A.Investigation of thermal high cycle and low cycle fatigue mechanisms of thick thermal barrier coatings.Mater. Sci. Eng. A, 1998, 245(2): 212-223.
|
[14] |
CAO X Q, Vassen S R D. Ceramic materials for thermal barrier coatings.J. Eur. Ceram. Soc., 2004, 24(1): 1-10.
|
[15] |
HERNANDEZA M T, KARLSSONA A M, BARTSCHB M.On TGO creep and the initiation of a class of fatigue cracks in thermal barrier coatings.Surf. Coat. Technol., 2009, 203(23): 3549-3558
|
[16] |
MARTENAA M, BOTTOB D, FINOA P, et al.Modelling of TBC system failure: stress distribution as a function of TGO thickness and thermal expansion mismatch.Eng. Failure Analysis, 2006, 13(3): 409-426.
|
[17] |
MARINO K A, BERIT H, EMILY A.et al.Atomic-scale insight and design principles for turbine engine thermal barrier coatings from theory.PNAS, 2011, 108(14): 5480-5487.
|
[18] |
TOMIMATSU T, ZHU S, KAGAWA Y.Effect of thermal exposure on stress distribution in TGO layer of EB-PVD TBC.Acta Materialia, 2003, 51(8): 2397-2405.
|
[19] |
GARVIE R C, HANNINK R H, PASCOE R T.Ceramic steel?Nature, 1975, 258(25): 703-704.
|