Journal of Inorganic Materials ›› 2015, Vol. 30 ›› Issue (10): 1115-1120.DOI: 10.15541/jim20150197
• Orginal Article • Previous Articles
LV Yan-Hong1, CHEN Ji-Kun1, 2, DOBELI Max3, LI Yu-Long1, SHI Xun1, CHEN Li-Dong1
Received:
2015-04-22
Published:
2015-08-20
Online:
2015-09-30
About author:
LV Yan-Hong(1987–), female, candidate of PhD. E-mail: lyh2012@student.sic.ac.cn
Supported by:
CLC Number:
LV Yan-Hong, CHEN Ji-Kun, DOBELI Max, LI Yu-Long, SHI Xun, CHEN Li-Dong. Congruent Growth of Cu2Se Thermoelectric Thin Films Enabled by Using High Ablation Fluence During Pulsed Laser Deposition[J]. Journal of Inorganic Materials, 2015, 30(10): 1115-1120.
Fig. 1 (a) Composition of CuxSe thin films grown in vacuum using different ablation fluences, (b) deviation in the copper composition of as-grown thin films as compared to the target (Cu2.06Se): (x-2.06)/2.06 and (c) X-ray diffraction of the CuxSe thin films grown using an ablation fluence of 10 J/cm2 and 5 J/cm2
Fig. 2 (a) SEM micrographs of surface as well as cross section morphologies of CuxSe films grown using various ablation fluences and (b) electrical conductivity (σ), Seebeck coefficient (S) and power factor (PF) of as-grown CuxSe thin films using various ablation fluences
Fig. 3 Sputter yield of Cu and Se atoms in a 10 nm Cu2Se layer by the arriving Cu+ or Se+ with various incoming energies, estimated by stopping and range of ions in matter
Fig. 4 Electrical conductivity (σ), Seebeck coefficient (S) and power factor (PF) of as-grown CuxSe thin films using an ablation fluence of 10 J/cm2 at various argon background pressures
Fig. 5 (a) Power factor (PF) of as-grown CuxSe thin films using an ablation fluence of 10 J/cm2 or 5 J/cm2 at various argon background pressures and (b) Comparison of the surface morphology of the CuxSe grown at 5 Pa argon pressure using 10 J/cm2 and 5 J/cm2 ablation fluence
[1] | LIU H L, SHI X, XU F F, et al.Copper ion liquid-like thermoelectrics.Nature Materials, 2012 11(5): 422-425. |
[2] | LIU H L, YUAN X, LU P, et al.Ultrahigh thermoelectric performance by electron and phonon critical scattering in Cu2Se1-xIx.Advanced Materials, 2013, 25(45): 6607-6612. |
[3] | CHEN L D, XIONG Z, BAI S Q.Recent progress of thermoelectric nano-composites.Journal of Inorganic Materials, 2010, 25(6): 561-568. |
[4] | ZHAN B, LAN J L, LIU Y C, et al.Research progress of oxides thermoelectric materials.Journal of Inorganic Materials, 2014, 29(3): 237-244. |
[5] | SNYDER G J, TOBERER E S.Complex thermoelectric materials.Nature Materials, 2008, 7(2): 105-114. |
[6] | CHEN J, LV Y H, DÖBELI M, et al. Composition control of pulsed laser deposited copper (I) chalcogenide thin films via plasma/Ar interactions.Science China Materials, 2015, DOI: 10.1007/s40843-015-0022-9. |
[7] | LV Y H, CHEN J K, ZHENG R K, et al.(001)-oriented Cu2-ySe thin films with tunable thermoelectric performances grown by pulsed laser deposition.Ceramics International, 2015, 41(6): 7439-7445. |
[8] | CHEN J K, PALLA-PAPAVLU A, LI Y L, et al. Laser deposition and direct-writing of thermoelectric misfit cobaltite thin films. Applied Physics Letters, 2014, 2014, 104(23): 231907-1-5. |
[9] | HE H, XIAO M, ZHONG Q, et al.Influence of laser pulse energy on the microstructure and optical properties of Cu2ZnSnS4 films by one-step pulsed laser deposition.Ceramics International, 2014, 40(8): 13263-13267. |
[10] | CHEN J K.Analysis of Laser-Induced Plasmas Utilizing 18O2 as Oxygen Tracer, Ph. D. Thesis, ETH Zurich, 2014. |
[11] | LOWNDES D H, GEOHEGAN D B, PIRETZKY A A, et al.Synthesis of novel thin-film materials by pulsed laser deposition.Science, 1996, 273(5277): 898-903. |
[12] | WILLMOTT P R, HUBER J R.Pulsed laser vaporization and deposition.Reviews of Modern Physics, 2000, 72(1): 315-328. |
[13] | CHEN J K, DÖBELI M, STENDER D, et al. Plasma interactions determine the composition in pulsed laser deposited thin films. Applied Physics Letters, 2014, 105(11): 114104-1-5. |
[14] | WICKLEIN S, SAMBRI A, AMORUSO S, et al. Pulsed laser ablation of complex oxides: the role of congruent ablation and preferential scattering for the film stoichiometry. Applied. Physics Letters, 2012, 101(13): 131601-1-5. |
[15] | STURM K, KREBS H U.Quantification of resputtering during pulsed laser deposition.Journal of Applied Physics, 2001, 90(2): 1061-1063. |
[16] | FÄHLER S, STURM K, KREBS H U. Resputtering during the growth of pulsed-laser-deposited metallic films in vacuum and in an ambient gas.Applied Physics Letters, 1999, 75(24): 3766-3768. |
[17] | GONZALO J, SIEGEL J, PEREA A, et al.Imaging self-sputtering and backscattering from the substrate during pulsed laser deposition of gold.Physical Review B, 2007, 76(3): 035435. |
[18] | XU C, WICKLEIN S, SAMBRI A, et al.Impact of the interplay between nonstoichiometry and kinetic energy of the plume species on the growth mode of SrTiO3 thin films.Journal of Physics D-Applied Physics, 2014, 47(3): 034009. |
[19] | LIU Q Z, LIU J J, LI B, et al. Composition dependent metal-semiconductor transition in transparent and conductive La-doped BaSnO3 epitaxial films. Applied Physics Letters, 2012, 101(24): 241901-1-5. |
[20] | MCLAUGHLIN M, SAKEEK H F, MAGUIRE P, et al.Properties of ZnS thin-films prepared by 248-nm pulsed-laser deposition.Applied Physics Letters, 1993, 63(14): 1865-1867. |
[21] | SHEN W P, KWOK H S.Crystalline phases of II-VI compound semiconductors grown by pulsed-laser deposition.Applied Physics Letters, 1994, 65(17): 2162-2164. |
[22] | MAKALA R S, JAGANNADHAM K, SALES B C.Pulsed laser deposition of Bi2Te3-based thermoelectric thin films.Journal of Applied Physics, 2003, 94(6): 3907-3918. |
[23] | LI BASSI A, BAILINI A, CASARI C S, et al. Thermoelectric properties of Bi-Te films with controlled structure and morphology. Journal of Applied Physics, 2009, 105(12): 124307-1-9. |
[24] | LIDE DAVID R (ed). CRC Handbook of Chemistry and Physics, 84th Edition. CRC Press. Boca Raton, Florida, 2003; Section 6, Fluid Properties; Vapor Pressure. |
[25] | MARLA D, BHANDARKAR U V, JOSHI S S. Critical assessment of the issues in the modeling of ablation and plasma expansion processes in the pulsed laser deposition of metals. Journal of Applied Physics, 2011, 109(2): 021101-1-15. |
[26] | WU B X, SHIN Y C. Modeling of nanosecond laser ablation with vapor plasma formation. Journal of Applied Physics, 2006, 99(8): 084310-1-8. |
[27] | FANG R R, ZHANG D M, LI Z H, et al.Laser-target interaction during high-power pulsed laser deposition of superconducting thin films.Physica Status Solidi a-Applications and Materials Science, 2007, 204(12): 4241-4248. |
[28] | WITTMAACK K.Reliability of a popular simulation code for predicting sputtering yields of solids and ranges of low-energy ions.Journal of Applied Physics, 2004, 96(5): 2632-2637. |
[1] | CHENG Jun, ZHANG Jiawei, QIU Pengfei, CHEN Lidong, SHI Xun. Preparation and Thermoelectric Transport Properties of P-doped β-FeSi2 [J]. Journal of Inorganic Materials, 2024, 39(8): 895-902. |
[2] | MIAO Xin, YAN Shiqiang, WEI Jindou, WU Chao, FAN Wenhao, CHEN Shaoping. Interface Layer of Te-based Thermoelectric Device: Abnormal Growth and Interface Stability [J]. Journal of Inorganic Materials, 2024, 39(8): 903-910. |
[3] | CHEN Hao, FAN Wenhao, AN Decheng, CHEN Shaoping. Improvement of Thermoelectric Performance of SnTe by Energy Band Optimization and Carrier Regulation [J]. Journal of Inorganic Materials, 2024, 39(3): 306-312. |
[4] | ZHANG Zhe, SUN Tingting, WANG Lianjun, JIANG Wan. Flexible Thermoelectric Films with Different Ag2Se Dimensions: Performance Optimization and Device Integration [J]. Journal of Inorganic Materials, 2024, 39(11): 1221-1227. |
[5] | MENG Yuting, WANG Xuemei, ZHANG Shuxian, CHEN Zhiwei, PEI Yanzhong. Single- and Two-band Transport Properties Crossover in Bi2Te3 Based Thermoelectrics [J]. Journal of Inorganic Materials, 2024, 39(11): 1283-1291. |
[6] | SU Haojian, ZHOU Min, LI Laifeng. Optimization of Thermoelectric Properties of SnTe via Multi-element Doping [J]. Journal of Inorganic Materials, 2024, 39(10): 1159-1166. |
[7] | XIAO Yani, LYU Jianan, LI Zhenming, LIU Mingyang, LIU Wei, REN Zhigang, LIU Hongjing, YANG Dongwang, YAN Yonggao. Hygrothermal Stability of Bi2Te3-based Thermoelectric Materials [J]. Journal of Inorganic Materials, 2023, 38(7): 800-806. |
[8] | WANG Bo, YU Jian, LI Cuncheng, NIE Xiaolei, ZHU Wanting, WEI Ping, ZHAO Wenyu, ZHANG Qingjie. Service Stability of Gd/Bi0.5Sb1.5Te3 Thermo-electro-magnetic Gradient Composites [J]. Journal of Inorganic Materials, 2023, 38(6): 663-670. |
[9] | HE Danqi, WEI Mingxu, LIU Ruizhi, TANG Zhixin, ZHAI Pengcheng, ZHAO Wenyu. Heavy-Fermion YbAl3 Materials: One-step Synthesis and Enhanced Thermoelectric Performance [J]. Journal of Inorganic Materials, 2023, 38(5): 577-582. |
[10] | LIN Siqi, LI Airan, FU Chenguang, LI Rongbing, JIN Min. Crystal Growth and Thermoelectric Properties of Zintl Phase Mg3X2 (X=Sb, Bi) Based Materials: a Review [J]. Journal of Inorganic Materials, 2023, 38(3): 270-279. |
[11] | HUA Siheng, YANG Dongwang, TANG Hao, YUAN Xiong, ZHAN Ruoyu, XU Zhuoming, LYU Jianan, XIAO Yani, YAN Yonggao, TANG Xinfeng. Effect of Surface Treatment of n-type Bi2Te3-based Materials on the Properties of Thermoelectric Units [J]. Journal of Inorganic Materials, 2023, 38(2): 163-169. |
[12] | LI Jianbo, TIAN Zhen, JIANG Quanwei, YU Lifeng, KANG Huijun, CAO Zhiqiang, WANG Tongmin. Effects of Different Element Doping on Microstructure and Thermoelectric Properties of CaTiO3 [J]. Journal of Inorganic Materials, 2023, 38(12): 1396-1404. |
[13] | LU Zhiqiang, LIU Keke, LI Qiang, HU Qin, FENG Liping, ZHANG Qingjie, WU Jinsong, SU Xianli, TANG Xinfeng. Donor-like Effect and Thermoelectric Performance in p-Type Bi0.5Sb1.5Te3 Alloy [J]. Journal of Inorganic Materials, 2023, 38(11): 1331-1337. |
[14] | JIANG Runlu, WU Xin, GUO Haocheng, ZHENG Qi, WANG Lianjun, JIANG Wan. UiO-67 Based Conductive Composites: Preparation and Thermoelectric Performance [J]. Journal of Inorganic Materials, 2023, 38(11): 1338-1344. |
[15] | WANG Pengjiang, KANG Huijun, YANG Xiong, LIU Ying, CHENG Cheng, WANG Tongmin. Inhibition of Lattice Thermal Conductivity of ZrNiSn-based Half-Heusler Thermoelectric Materials by Entropy Adjustment [J]. Journal of Inorganic Materials, 2022, 37(7): 717-723. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||