Journal of Inorganic Materials ›› 2015, Vol. 30 ›› Issue (7): 683-693.DOI: 10.15541/jim20140648
• Orginal Article • Previous Articles Next Articles
WANG Dan-Jun1, 2, ZHANG Jie1, GUO Li1, SHEN Hui-Dong1, FU Feng1, XUE Gang-Lin2, FANG Yi-Fan1
Received:
2014-12-16
Revised:
2015-01-17
Published:
2015-07-20
Online:
2015-06-25
Supported by:
CLC Number:
WANG Dan-Jun, ZHANG Jie, GUO Li, SHEN Hui-Dong, FU Feng, XUE Gang-Lin, FANG Yi-Fan. Modification Strategies for Semiconductor Photocatalyst Based on Energy Band Structure Theory[J]. Journal of Inorganic Materials, 2015, 30(7): 683-693.
Fig. 6 (A) Total DOSs of doped TiO2 and (B) DOSs of the dopants anion located at a substitutional site for O atom in the anatase TiO2 crystal[10] Ni-doped stands for N doping at an interstitial sites, and Ni-s-doped stands for doping at both substitutional and interstitial sites
Fig. 7 (A) Total DOS of S-doped TiO2 and (B) total DOS of F-doped TiO2[18] Eg indicates the band gap energy. The impurity states are labeled (I) and (II)
Fig. 8 Serial electronic structures of α-AgMO2(M=A1, Ga, In) and comparation of their photo catalytic activity (A) Electronic structures of α-AgMO2 (M=Al, Ga, In), (B) Photocatalytic degradation of isopropanol using α-AgGaO2 and α-AgInO2 under visible light irradiation (400 nm<λ<520 nm) and (C) Apparent photonic efficiency of acetone evolution using α-AgGaO2 for various wavelength ranges within the UV-visible absorption spectrum[28]
Fig. 11 (A)Schematic electronic structures of AgAlO2, AgGaO2 and AgAl1-xGaxO2 solid solutions; (B) UV-visible absorption spectra of β-AgAl1-xGaxO2 solid solutions; (C) Rate of acetone evolution, band-gap, and color of β-AgAl1-xGaxO2 as a function of x; (D) Apparent quantum efficiency of IPA photodegradation over β-AgAl0.6Ga0.4O2 in various wavelength ranges within the V-visible absorption spectrum[32]
Fig. 14 Photocatalytic activity enhancement of Ag-loaded Bi2WO6[48] (Left: room temperature photoluminescence (PL) spectra of Bi2WO6 (a), and Ag-loaded Bi2WO6 nanoarchitecture, λexcitation=300 nm; Right: Energy band diagram and photocatalytic scheme of the Ag-loaded Bi2WO6)
[1] | FUJISHIMA A, HONDA K.Electrochemical photocatalysis of water at a semiconductor electrode.Nature, 1972, 238(5358): 37-38. |
[2] | CAREY J, LAWRENCE J, TOSINE H B.Photodechlorination of PCB’s in the presence of titanium dioxide in aqueous suspension.Bull. Envirn. Contamin.Toxi., 1976, 16(6): 697-701. |
[3] | FRANK S, BARD A.Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder.J. Am. Chem. Soc., 1977, 99(1): 303-304. |
[4] | CHEN X B, SHEN S H, GUO L J, et al.Semiconductor-based photocatalytic hydrogen generation.Chem. Rev., 2010, 110(11): 6503-6570. |
[5] | CHOI W, TERMIN A, HOFFMANN M R.Effect of metal-ion dopants on the photocatalytic reactivity of quantum-sized TiO2 particles.Angew. Chem. Int. Ed., 1994, 33(10): 1091-1092. |
[6] | LI F B, LI X Z, HOU M F.Photocatalytic degradation of 2-mercaptobenzothiazole in aqueous La3+-TiO2 suspension for odor control.Appl. Catal. B 2004, 48(3): 185-194. |
[7] | NAGAVENI K, HEGDE M S, MADRAS G.Structure and photocatalytic activity of Ti1-xMxO2+δ (M=W, V, Ce, Zr, Fe and Cu) synthesized by solution combustion method.J. Phys. Chem. B., 2004, 108(40): 20204-24212. |
[8] | SORANTIN P I, SCHWARZ K.Chemical bonding in rutile-type compounds.Inorg. Chem., 1992, 31(4): 567-576. |
[9] | UMEBAYASHI T, YAMAKI T, ITOH H, et al.Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations.J. Phys. Chem. Solids, 2002, 63(10): 1909-1920. |
[10] | ASAHI R, MORIKAWA T, OHWAKL T, et al.Visible-light photocatalysis in nitrogen-doped titanium oxides.Science, 2001, 293(5528): 269-271. |
[11] | YIN S, ZHANG Q, SAITO F, et al.Preparation of visible- activated titania photocatalyst by mechanochemical method.Mater. Letters, 2003, 32(4): 358-359. |
[12] | CHEN X, WANG X, HOU Y, et al.The effect of post-nigridation annealing on the surface property and photocatalytic performance of N-doped TiO2 under visible-light irradation.J. Catal., 2008, 255(1): 59-67. |
[13] | OHNO T, MITSUI T, MATSUMURA M.Photocatalytic activity of S-doped TiO2 photocatalyst under visible light.Chem. Lett., 2003, 32(4): 364-365. |
[14] | NAKANO Y, MORIKAWA T, OHWAKI T, et al. Electrical characterization of band gap states in C-doped TiO2 films. Appl. Phys. Lett., 2005, 87(5): 052111-1-3. |
[15] | LEE J Y, PARK J, CHO J H. Electronid properties of N- and C-doped TiO2. Appl. Phys. Lett., 2005, 87(1): 011904-1-3. |
[16] | DI V C, Pacchion G, Selloni A, et al.Characterization of paramagnetic species in N-doped TiO2 powders by ERR spectroscopy and DFT calculations.J. Phys. Chem. B, 2005, 109(23): 11414-11419. |
[17] | UMEBAYASHI T, YAMAKI T, YAMAMOTO S, et al.Sulf-doping of rutile-titanium dioxide by ion implantation: photocurent specctroscopy and firsr-principles band clculation studies.J. Appl. Phys., 2003, 93(9): 5156-5160. |
[18] | YAMAKI T, UMEBAYASHI T, SUMITA T, et al.Fluorine-doping in titanium dioxide by ion implantation technology.Nucl. Instrum.Methods Phys. Res.Sect. B: Beam Interact. Mater., 2003, 206: 254-258. |
[19] | YU J C, LI G S, WANG X C, et al.An ordered cubic Im3m mesoporous Cr-TiO2 visible light photocatalyst.Chem. Commun., 2006, 25: 2717-2719. |
[20] | BURDA C, LUO Y B, CHEN X B, et al.Enhanced nitrogen doping TiO2 nanoparticles.Nano Letters, 2003, 3(8): 1049-1051. |
[21] | LIVRAGHI S, PAGANINI M C, GIAMELLO E, et al.Origin of photoactivity of nitrogen-doped titanium dioxide under visible light.J. Am. Chem. Soc., 2006, 128(46): 15666-15671. |
[22] | KUMAR S, BARUAH A, TONDA S, et al.Cost-effective eco-friendly synthesis of novel and stable N-doped ZnO/g-C3N4 core-shell nanoplates with excellent visible-light responsive photocatalysis.Nanoscale, 2014, 6(9): 4830-4842. |
[23] | TANG J W, ZOU Z G, YE J H.Effect of substituting Sr2+ and Ba2+ for Ca2+ on the structural properties and photocatlytic behaviors of CaIn2O4.Chem. Mater., 2004, 16(9): 1644-1649. |
[24] | YIN J, ZOU Z G, YE J H.A novel series of the new visible-light driven photocatalysts MCo1/3Nb2/3O3 (M=Ca, Sr, Ba) with special electronic structures.J. Phys. Chem. B., 2003, 107(21): 4936-4941. |
[25] | ZHANG W F, TANG J W, YE J H.Structural, photocatalytic, and photophysical properties of perovskite MSnO3 (M=Ca, Sr, and Ba ).J. Mater. Res., 2007, 22(7): 1859-1871. |
[26] | SATO J, KOBAYASHI H, SAITO N, et al.Photocatalytic activities for water decomposition of RuO2-loaded AinO2 (A=Li, Na) with d10 configuration.J. Photochem. Photobio. A, 2003, 158(2/3): 139-144. |
[27] | ZOU Z G., YE J H, ARAKAWA H.Subsitution effects of In3+ by Al3+ and Ga3+ on the photocatalytic and structureal properties of the Bi2InNbO7 photocatalyst.Chem. Mater., 2001, 13(5): 1765-1769. |
[28] | OUYANG S X, KIKUGAWA N, CHEN D, et al.A systematical study on photocatalytic properties of AgMO2 (M=Al, Ga, In): effects of chemical compositions, crystal structures, and electronic structures.J. Phys. Chem. C, 2009, 113(4): 1560-1566. |
[29] | BI Y P, OUYANG S X, UMEZAWA N, et al.Facet effect of single- crystalline Ag3PO4 sub-microcrystals on photocatalytic properties.J. Am. Chem. Soc., 2011, 133(17): 6490-6492. |
[30] | BI Y P, HU H Y, JIAO Z B, et al.Two-dimensional dendritic Ag3PO4 nanotructures and their photocatalytic properties.Phys. Chem. Chem. Phys., 2012, 14: 14486-14488. |
[31] | MAEDA K, DOMEN K.Solid Solution of GaN and ZnO as a stable photocatalyst for overall water splitting under visible light.Chem. Mater., 2010, 22(3): 612-623. |
[32] | OUANG S X, YE J H.β-AgAl1-xGaxO2 solid-solution photocatalysts: continuous modulation of electronic structure toward high-performance visible-light photoactivity. J. Am. Chem. Soc., 2011, 133(20): 7757-7763. |
[33] | HARA K, SATO T, KATOH R, et al.Novel conjugated organic dyes for efficient dye-sensitized solar cell.Adv. Funct. Mater., 2005, 15(2): 246-252. |
[34] | ABE R, SAYAMA K, SUGIHARA H.Development of new photocatalytic water splitting into H2 and O2 using two different semiconductor photocatalysts and a shuttle redox mediator IO3-/I-.J. Phys. Chem. B, 2005, 109(33): 16052-16061. |
[35] | MATSUMOTO Y, UNAL U, TANAKA N, et al.Electrochemical approach to evaluate the mechanism of photocatalytic water splitting on oxide photocatalysts.J. Solid State Chem., 2004, 177(110): 4205-4212. |
[36] | MAEDA K, KURIKI R, ZHANG M W, et al.The effect of the pore-wall structure of carbon nitride on photocatalytic CO2 reduction under visible.J. Mater. Chem. A, 2014, 2(36): 15416-16151. |
[37] | SANT P A, KAMAT P V.Inter-particle electron transfer between size quantized CdS and TiO2 semiconductor nanoclusters.Phys. Chem. Chem. Phys., 2002, 4(2): 198-203. |
[38] | ROBEL I, SUBRAMANIAN V, KUNO M, et al.Quantum dot solar cells. Havrvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films.J. Am. Chem. Soc., 2006, 128(7): 2385-2393. |
[39] | WANG D J, GUO L, ZHEN Y Z, et al.AgBr quantum dots decorated mesoporous Bi2WO6 architectures with enhanced photocatalytic activities for methylene blue. J. Mater. Chem. A, 2014, 2(30): 11716-11727. |
[40] | YU J G, WANG S H, LOW J X, et al.Enhanced photocatalytic performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air.Phys. Chem. Chem. Phys., 2013, 15(39): 16883-16890. |
[41] | LI Y J, CAO T P, SHAO C L, et al.Preparation and photocatalytic properties of γ-Bi2O3/TiO2 composite fibers. J. Inorg. Mater., 2012, 27(7): 687-692. |
[42] | MEI Z W, OUYANG S X, TANG D M, et al.An ion-exchange route for the synthesis of hierarchical In2S3/ZnIn2S4 bulk composite and its photocatalytic activity under visible-light irradiation.Dalton Trans., 2013, 42(8): 2687-2690. |
[43] | JIANG D L, CHEN L L, XIE J M, et al.Ag2S/g-C3N4 composite photocatalysts for efficient Pt-free hydrogen production. The co-catalyst function of Ag/Ag2S formed by simultaneous photodeposition.Dalton. Trans., 2014, 43(12): 4878-4885. |
[44] | LIN F, WANG D E, JIANG Z X, et al.Photocatalytic oxidation of thiophene on BiVO4 with dual co-catalyst Pt and RuO2 under visible light irrdiation using molecular oxygen as oxidant.Energy Environ. Sci., 2012, 5: 6400-6406. |
[45] | DENG D S, YANG Y, GONG Y T.Palladium nanoparticles supported on mpg-C3N4 as active catalyst for semihydrogenation of phenylacetylene under mild conditions.Green Chem., 2013, 15(9): 2525-2531. |
[46] | KAWAHARA K, SUZUKI K, OHKO Y, et al.Electron transport in silver semiconductor nanocomposite films exhibiting multicolor photochromism.Phys. Chem. Chem. Phys., 2005, 7(22): 3851-3855. |
[47] | TIAN Y, TATSUMA T.Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J. Am. Chem. Soc., 2005, 127(20): 7632-7637. |
[48] | WANG D J, XUE G L, ZHEN Y Z, et al.Monodispersed Ag nanoparticles loaded on the surface of spherical Bi2WO6 nanoarchitectures with enhanced photocatalytic activities.J. Mater. Chem., 2012, 22(11): 4751-4758. |
[1] | WEI Xiangxia, ZHANG Xiaofei, XU Kailong, CHEN Zhangwei. Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials [J]. Journal of Inorganic Materials, 2024, 39(9): 965-978. |
[2] | YANG Xin, HAN Chunqiu, CAO Yuehan, HE Zhen, ZHOU Ying. Recent Advances in Electrocatalytic Nitrate Reduction to Ammonia Using Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(9): 979-991. |
[3] | LIU Pengdong, WANG Zhen, LIU Yongfeng, WEN Guangwu. Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(9): 992-1004. |
[4] | MA Binbin, ZHONG Wanling, HAN Jian, CHEN Liangyu, SUN Jingjing, LEI Caixia. ZIF-8/TiO2 Composite Mesocrystals: Preparation and Photocatalytic Activity [J]. Journal of Inorganic Materials, 2024, 39(8): 937-944. |
[5] | HUANG Jie, WANG Liuying, WANG Bin, LIU Gu, WANG Weichao, GE Chaoqun. Research Progress on Modulation of Electromagnetic Performance through Micro-nanostructure Design [J]. Journal of Inorganic Materials, 2024, 39(8): 853-870. |
[6] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
[7] | JIN Yuxiang, SONG Erhong, ZHU Yongfu. First-principles Investigation of Single 3d Transition Metals Doping Graphene Vacancies for CO2 Electroreduction [J]. Journal of Inorganic Materials, 2024, 39(7): 845-852. |
[8] | YE Zibin, ZOU Gaochang, WU Qiwen, YAN Xiaomin, ZHOU Mingyang, LIU Jiang. Preparation and Performances of Tubular Cone-shaped Anode-supported Segmented-in-series Direct Carbon Solid Oxide Fuel Cell [J]. Journal of Inorganic Materials, 2024, 39(7): 819-827. |
[9] | CAO Qingqing, CHEN Xiangyu, WU Jianhao, WANG Xiaozhuo, WANG Yixuan, WANG Yuhan, LI Chunyan, RU Fei, LI Lan, CHEN Zhi. Visible-light Photodegradation of Tetracycline Hydrochloride on Self-sensitive Carbon-nitride Microspheres Enhanced by SiO2 [J]. Journal of Inorganic Materials, 2024, 39(7): 787-792. |
[10] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[11] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[12] | WU Xiaochen, ZHENG Ruixiao, LI Lu, MA Haolin, ZHAO Peihang, MA Chaoli. Research Progress on In-situ Monitoring of Damage Behavior of SiCf/SiC Ceramic Matrix Composites at High Temperature Environments [J]. Journal of Inorganic Materials, 2024, 39(6): 609-622. |
[13] | ZHAO Rida, TANG Sufang. Research Progress of Ceramic Matrix Composites Prepared by Improved Reactive Melt Infiltration through Ceramization of Porous Carbon Matrix [J]. Journal of Inorganic Materials, 2024, 39(6): 623-633. |
[14] | FANG Guangwu, XIE Haoyuan, ZHANG Huajun, GAO Xiguang, SONG Yingdong. Progress of Damage Coupling Mechanism and Integrated Design Method for CMC-EBC [J]. Journal of Inorganic Materials, 2024, 39(6): 647-661. |
[15] | ZHANG Xinghong, WANG Yiming, CHENG Yuan, DONG Shun, HU Ping. Research Progress on Ultra-high Temperature Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(6): 571-590. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||