[1] LIN D C, ZHANG D X, CHEN J R. A review of status and prospects of the materials for solid rocket motors. Aerosp. Mater. Technol., 1999(4): 1–5.
[2] SU J M. Development of C/C composites as nozzle-throat materials. Carbon Sci. Technol., 2001, 11(1): 6–11.
[3] FITZER E, MANOCHA L M. Carbon reinforcements and carbon/carbon composites. Berlin: Springer, 1998: 250–319.
[4] BERDOYES M. Snecma Propulsion Solide Advanced Technology SRM Nozzles. History and Future. In: 42nd Joint Propulsion Conference & Exhibit, Sacramento, CA, US 2006, AIAA–2006– 4596.
[5] 张立同, 李贺军. 碳基复合材料. 见: 主编 益小苏, 杜善义, 张立同. 中国材料工程大典 第10卷 复合材料工程. 北京: 化学工业出版社, 2005: 639–679.
[6] TONG Q F, SHI J L, SONG Y Z, et al. Resistance to ablation of pitch derived ZrC/C composites. Carbon, 2004, 42(12/13): 2495–2500.
[7] LI X T, SHI J L, ZHANG G L, et al. Effect of ZrB2 on the ablation properties of carbon composites. Mater. Lett., 2006, 60(7): 892–896.
[8] TANG S F, DENG J Y, WANG S J, et al. Ablation behaviors of ultrahigh temperature ceramic composites. Mater. Sci. Eng. A, 2007, 465(1/2): 1–7.
[9] WANG Y G, ZHU X J, ZHANG L T, et al. C/C-SiC-ZrC composites fabricated by reactive melt infiltration with Si0.87Zr0.13 alloy. Ceram. Int., 2012, 38(5): 4337–4343.
[10] ZHU Y L, WANG S, LI W, et al. Preparation of carbon fiber- reinforced zirconium carbide matrix composites by reactive melt infiltration at relative low temperature. Scripta Mater., 2012, 67(10): 822–825
[11] ZHU Y L, WANG S, LI W, et al. Preparation of carbon fiber-reinforced zirconium carbide matrix composites by reactive melt infiltration at relative low temperature. Scripta Mater., 2012, 67(10): 822–825
[12] WU H T, WEI X, YU S Q, et al. Ablation performances of multi-phased C/C-ZrC-SiC ultra-high temperature composites. J. Inorg. Mater., 2011, 26(8): 852–856.
[13] LI K Z, XIE J, FU Q G, et al. Effects of porous C/C density on the densification behavior and ablation property of C/C-ZrC-SiC composites. Carbon, 2013, 57: 161–168.
[14] FENG B, LI H J, ZHANG Y L, et al. Effect of SiC/ZrC ratio on the mechanical and ablation properties of C/C-SiC-ZrC composites. Corros. Sci., 2014, 82: 27–35.
[15] SHEN X T, LI K Z, LI H J, et al. The effect of zirconium carbide on ablation of carbon/carbon composites under an oxyacetylene flame. Corros. Sci., 2011, 53(1): 105–112.
[16] LI C Y, LI K Z, LI H J, et al. Ablation resistance and thermal conductivity of carbon/carbon composites containing hafnium carbide. Corros. Sci., 2013, 75: 169–175.
[17] LI S P, LI K Z, LI H J, et al. Effect of HfC on the ablative and mechanical properties of C/C composites. Mater. Sci. Eng. A, 2009, 517(1/2): 61–67.
[18] LI C Y, LI K Z, LI H J, et al. Mechanical and thermophysical properties of carbon/carbon composites with hafnium carbide. Ceram. Int., 2013, 39(6): 6769–6776.
[19] LI W, LI H J, ZHANG S Y, et al. Effect of high temperature treatment on the microstructure and mechanical properties of binary layer textured 2D C/C composites. New Carbon Mater., 2011, 26(5): 328–334.
[20] YU S Q, ZHANG W G. Effect of heat-treatment temperature on mechanical properties of pyrocarbon and C/C composites. J. Inorg. Mater., 2010, 25(3): 315–320.
[21] CHEN T F, GONG W P, ZHANG H B, et al. Influence of heat-treatment on crack initiation in smooth laminar pyrolytic carbon matrix. Mater. Sci. Eng. Power. Metall., 2006, 11(4): 210–213.
[22] SUN L M, LI H J, ZHANG S Y. Bending fracture behavior of pitch-based C/C composites. New Carbon Mater., 2001, 16(3): 28–31.
[23] HE Y G, LI K Z, WEI J F, et al. Study on the microstructures and mechanical properties of 2 D C/C composites. J. Inorg. Mater., 2010, 25(2): 173–176. |