无机材料学报 ›› 2020, Vol. 35 ›› Issue (5): 511-524.DOI: 10.15541/jim20190305
所属专题: 功能陶瓷论文精选(一):发光材料; 【虚拟专辑】电致变色与热致变色材料; 【虚拟专辑】柔性材料(2020~2021)
• 综述 • 下一篇
收稿日期:
2019-06-24
修回日期:
2019-11-18
出版日期:
2020-05-20
网络出版日期:
2020-01-15
作者简介:
贾汉祥(1993-), 男, 博士研究生. E-mail: jiahanxiang@student.sic.ac.cn<br/>JIA Hanxiang(1993-), male, PhD candidate. E-mail: <email>jiahanxiang@student.sic.ac.cn</email>
基金资助:
JIA Hanxiang1,2,CAO Xun1(),JIN Pingshi1
Received:
2019-06-24
Revised:
2019-11-18
Published:
2020-05-20
Online:
2020-01-15
Supported by:
摘要:
智能场致变色材料是一类能在外场(电场、温度、光照、气氛)刺激下发生可逆光学变化的物质群。其中, 电致变色材料因其调节幅度大、响应速率快、着色效率高和循环稳定性好等特点,有望在智能窗、屏幕显示和多功能储能器件等领域得到广泛应用。相较于半固态电致变色器件难于封装以及有机电致变色材料易于变性失效, 无机全固态电致变色材料及其器件具有更好的综合应用性。本文聚焦典型无机全固态电致变色材料与器件, 综述了当前电致变色器件各结构层的制备途径, 并对比了其优劣性, 详细介绍了主要的电致变色备选材料及其关键性能评价指标, 并阐释了几种代表性电致变色器件的作用原理, 提出了使用兼具高透光率、低面电阻以及优异抗弯折性的透明柔性电极替代传统的刚性衬底以实现多场响应器件的应用拓展。最后, 从性能瓶颈、工艺难点及产业化机遇的角度对无机全固态电致变色器件的应用前景进行了展望, 为电致变色产业化进程提供了借鉴。
中图分类号:
贾汉祥, 曹逊, 金平实. 无机全固态电致变色材料与器件研究进展[J]. 无机材料学报, 2020, 35(5): 511-524.
JIA Hanxiang, CAO Xun, JIN Pingshi. Advances in Inorganic All-solid-state Electrochromic Materials and Devices[J]. Journal of Inorganic Materials, 2020, 35(5): 511-524.
图1 场致变色材料体系示例
Fig. 1 Schematic diagram of chromogenic system (a) Al3+ based electrochromic device and its light modulation[11]; (b) Gate-controlled VO2 phase transition by tuning hydrogenating level for high-performance smart windows[12]; (c) Illustration of reversible photochromic reaction in PC-PCN (photochromic porous coordination network)[13]; (d) Schematic description of the adsorption and diffusion of a H atom along WOx based gasochromic thin film[14]
图2 Ag/W18O49纳米线共组装体柔性电致变色器件示意图(a)和照片(b~e)[17]
Fig. 2 Schematic diagram (a) and photographs (b-e) of flexible electrochromic device of Ag/W18O49 nanowire co-assemble[17]
Category | EC Layer | Preparation method |
---|---|---|
Cathod coloration | WO3 | Magnetron sputtering[ |
MoO3 | Magnetron sputtering[ | |
Nb2O5 | Anodic oxidation[ | |
TiO2 | Hydrothermal[ | |
Anode coloring | NiOx | Magnetron sputtering |
IrO2 | Anodic oxidation[ | |
CoO2 | Hydrothermal[ | |
Prussian blue | Electrochemical deposition[ |
表1 主要的电致变色材料及制备方法
Table 1 Electrochromic materials and their deposition methods
Category | EC Layer | Preparation method |
---|---|---|
Cathod coloration | WO3 | Magnetron sputtering[ |
MoO3 | Magnetron sputtering[ | |
Nb2O5 | Anodic oxidation[ | |
TiO2 | Hydrothermal[ | |
Anode coloring | NiOx | Magnetron sputtering |
IrO2 | Anodic oxidation[ | |
CoO2 | Hydrothermal[ | |
Prussian blue | Electrochemical deposition[ |
图7 有无石墨烯界面层的电致变色电极的制备原理图[31]
Fig. 7 Schematic illustration of the preparation for electrochromic electrodes with and without a graphene interface layer[31]
图12 基于自形成裂纹模板技术的电致变色复合电极的制造工艺示意图[35]
Fig. 12 Schematic diagram of the fabrication process of the hybrid electrochromic electrode based on self-forming crackle pattern technology[35]
图13 Ag网格/PEDOT复合柔性电极薄膜[36]
Fig. 13 Ag grid/PEDOT hybrid flexible eletrode film[36] (a) Schematic illustration of the structure of the silver grid/PEDOT:PSS hybrid film; (b) Low- and high-magnification SEM image of the hybrid film; (c) EDS mapping of the hybrid film, demonstrating the uniform distribution of PEDOT:PSS across the whole film
图14 新型电致变色储能智能窗器件的系统方案(a)和设备制备过程示意图(b)[16]
Fig. 14 Scheme of a new ESS window device system (a) and schematic for the device preparation process (b)[16]
图15 Ag纳米网格/PEDOT:PSS上的WO3薄膜经过褪色和着色其透过率和光学调节幅度的变化[36]
Fig. 15 Transmittance and optical modulation changes of the WO3 on the silver grid/PEDOT:PSS hybrid film in the bleached and colored state[36] (a,b) Under repeated compressive bending; (c,d) Under repeated tensile bending. Curvature radius is 20 mm
图18 W18O49纳米线在ClO4-作为抗衡离子的有机聚碳酸酯(PC)溶剂中, 以Li+、Na+或Al3+进行电化学插入时的电致变色响应[54]
Fig. 18 Electrochromic response of W18O49 nanowires under electrochemical insertion from one of the three different ions: Li+, Na+, and Al3+ in organic polycarbonate (PC) solvent using ClO4- as counter ion under ambient conditions[54] (a) CV curves (solid: the 1st cycle, broken: the 30th cycle) of the W18O49 nanowires film at a scan rate of 10 mV·s-1 in 1.0 mol/L PC-Al(ClO4)3, PC-LiClO4, PC-NaClO4; (b) In situ transmittance variation curves between colored and bleached state for W18O49 nanowires film in 1.0 mol/L PC-Al(ClO4)3, PC-LiClO4, and PC-NaClO4. Solid and broken lines are for the 1st and 30th cycle, respectively; (c) Full plot of the in situ transmittance variation in the three non-aqueous solutions, a total of 30 cycles; (d) In situ OD variation as a function of charge density monitored at wavelength of 633 nm in PC-LiClO4, PC-NaClO4, PC-Al(ClO4)3
图19 不同操作下WO3薄膜的电致变色性能[58]
Fig. 19 Electrochromic performance of WO3 films under various operations[58] (a) Comparison of optical response at 550 nm and for 1.5-4.0 V with and without constant loading current, inset shows a magnified view of the transmittance during 20 initial cycles at 10 mV·s-1; (b) CV data for different cycle numbers at 10 mV·s-1; (c) Trapped and extracted charge densities vs cycle number derived from CV data
图20 ITO玻璃上有NiO籽晶层生长的NiO纳米薄膜的电致变色性能[61]
Fig. 20 Electrochromic properties of NiO nanoparticles film with seed layer on ITO glass[61] (a) Transmittance spectra of the NiO nanoparticles film with seed layer on ITO glass in the bleached (0.2 V) and colored (0.6 V) states in the wavelength range of 300-900 nm, with inset showing the digital photos of NiO film growing on ITO glass with seed layer on bleached state and colored state; (b) Current response for NiO nanoparticles film at 0.2 and 0.6 V applications in 1 mol/L KOH for 30 s per step; (c) Corresponding in situ optical responses of NiO films for 30 s per step measured at 550 nm; (d) Cycle performance of the NiO nanoparticles film measured in 1 mol/L KOH for 5000 cycles
图21 梯度Li+分布的LixNiOy全固态电致变色器件及性能
Fig. 21 LixNiOy all-solid-state ECDs based on gradient Li+ distribution and its performance (a) Schematic diagram of Li ions transportation in the ECD-1 for the coloration process; (b) Schematic diagram of Li ions transportation in the ECD-2 for the coloration process; (c) Comparison of the transmittance variety at 670 nm of LixNiOy-based ECD and NiOx-based ECD at 2.5 V bias; (d) Comparison of this work with recently reported all-solid-state ECDs
图22 多层(LDH/PB)n电致变色膜的LBL制造方法示意图[63,64]
Fig. 22 Schematic representation for the LBL fabrication of the multilayered (LDH/PB)n electrochromic film[63,64]
[1] |
GRANQVIST C G . Recent progress in thermochromics and electrochromics: a brief survey. Thin Solid Films, 2016,614:90-96.
DOI URL |
[2] | GRANQVIST C G . Oxide-based chromogenic coatings and devices for energy efficient fenestration: brief survey and update on thermochromics and electrochromics. Journal of Vacuum Science & Technology B, 2014,32(6):060801. |
[3] |
THAKUR V K, DING G Q, MA J , et al. Hybrid materials and polymer electrolytes for electrochromic device applications. Advanced Materials, 2012,24(30):4071-4096.
DOI URL |
[4] |
LIANG X, CHEN M, GUO S , et al. Dual-band modulation of visible and near-infrared light transmittance in an all-solution-processed hybrid micro-nano composite film. ACS Appl. Mater. Interfaces, 2017,9(46):40810-40819.
DOI URL PMID |
[5] |
LIANG X, CHEN M, WANG Q , et al. Active and passive modulation of solar light transmittance in a hybrid thermochromic soft-matter system for energy-saving smart window applications. Journal of Materials Chemistry C, 2018,6(26):7054-7062.
DOI URL |
[6] |
FENG W, ZHANG T R, LIU Y , et al. Novel hybrid inorganic- organic film based on the tungstophosphate acid-polyacrylamide system: photochromic behavior and mechanism. Journal of Materials Research, 2011,17(1):133-136.
DOI URL |
[7] |
LU N P, ZHANG P F, ZHANG Q H , et al. Electric-field control of tri-state phase transformation with a selective dual-ion switch. Nature, 2017,546(7656):124-128.
DOI URL PMID |
[8] |
FENG W, ZOU L P, GAO G H , et al. Gasochromic smart window: optical and thermal properties, energy simulation and feasibility analysis. Solar Energy Materials and Solar Cells, 2016,144:316-323.
DOI URL |
[9] |
KALANUR S S, YOO I H, LEE Y A , et al. Green deposition of Pd nanoparticles on WO3 for optical, electronic and gasochromic hydrogen sensing applications. Sensors and Actuators B-Chemical, 2015,221:411-417.
DOI URL |
[10] |
GRANQVIST C G . Electrochromics for smart windows: oxide- based thin films and devices. Thin Solid Films, 2014,564:1-38.
DOI URL |
[11] | ZHANG S L, CAO S, ZHANG T R , et al. Al 3+ intercalation/ de-intercalation-enabled dual-band electrochromic smart windows with a high optical modulation, quick response and long cycle life. Energy & Environmental Science , 2018,11(10):2884-2892. |
[12] |
CHEN S, WANG Z W, REN H , et al. Gate-controlled VO2 phase transition for high-performance smart windows. Science Advances, 2019,5(3):8.
DOI URL PMID |
[13] |
PARK J, FENG D, YUAN S , et al. Photochromic metal-organic frameworks: reversible control of singlet oxygen generation. Angew. Chem. Int. Ed. Engl., 2015,54(2):430-435.
DOI URL PMID |
[14] |
LEE Y A, KALANUR S S, SHIM G , et al. Highly sensitive gasochromic H2 sensing by nano-columnar WO3-Pd films with surface moisture. Sensors and Actuators B: Chemical, 2017,238:111-119.
DOI URL |
[15] |
ALAMER F A, OTLEY M T, DING Y J , et al. Solid-state high-throughput screening for color tuning of electrochromic polymers. Advanced Materials, 2013,25(43):6256-6260.
DOI URL PMID |
[16] | WANG K, WU H P, MENG Y N , et al. Integrated energy storage and electrochromic function in one flexible device: an energy storage smart window. Energy & Environmental Science, 2012,5(8):8384-8389. |
[17] |
WANG J L, LU Y R, LI H H , et al. Large area co-assembly of nanowires for flexible transparent smart windows. Journal of the American Chemical Society, 2017,139(29):9921-9926.
DOI URL PMID |
[18] |
WANG J M, ZHANG L, YU L , et al. A bi-functional device for self-powered electrochromic window and self-rechargeable transparent battery applications. Nat. Commun., 2014,5:4921.
DOI URL PMID |
[19] |
CAI G F, DARMAWAN P, CUI M Q , et al. Inkjet-printed all solid-state electrochromic devices based on NiO/WO3 nanoparticle complementary electrodes. Nanoscale, 2016,8(1):348-357.
DOI URL PMID |
[20] |
BI Z J, LI X M, CHEN Y B , et al. Bi-functional flexible electrodes based on tungsten trioxide/zinc oxide nanocomposites for electrochromic and energy storage applications. Electrochimica Acta, 2017,227:61-68.
DOI URL |
[21] |
SHEN L X, DU L H, TAN S Z , et al. Flexible electrochromic supercapacitor hybrid electrodes based on tungsten oxide films and silver nanowires. Chemical Communications, 2016,52(37):6296-6299.
DOI URL PMID |
[22] |
XU T, WALTER E C, AGRAWAL A , et al. High-contrast and fast electrochromic switching enabled by plasmonics. Nature Communications, 2016,7:10479.
DOI URL PMID |
[23] |
WANG M H, WEN J X, CHEN Y , et al. Nano-structured WO3 thin films deposited by glancing angle magnetron sputtering. Journal of Inorganic Materials, 2018,33(12):1303-1308.
DOI URL |
[24] |
USHA N, SIVAKUMAR R, SANJEEVIRAJA C . Structural, optical and electrochromic properties of Nb2O5:MoO3 (95:5, 90:10, and 85:15) thin films prepared by RF magnetron sputtering technique. Materials Letters, 2018,229:189-192.
DOI URL |
[25] |
SIVAKUMAR R, SHANTHAKUMARI K, THAYUMANAVAN A , et al. Molybdenum oxide (MoO3) thin film based electrochromic cell characterisation in 0.1 M LiClO4 center dot PC electrolyte. Surface Engineering, 2009,25(7):548-554.
DOI URL |
[26] |
ROSENFELD D, SCHMID P E, SZELES S , et al. Electrical transport properties of thin-film metal-oxide-metal Nb2O5 oxygen sensors. Sensors and Actuators B-Chemical, 1996,37(1/2):83-89.
DOI URL |
[27] |
CAI G F, TU J P, ZHOU D , et al. Multicolor electrochromic film based on TiO2@polyaniline core/shell nanorod array. Journal of Physical Chemistry C, 2013,117(31):15967-15975.
DOI URL |
[28] |
JUNG Y W, LEE J, TAK Y . Electrochromic mechanism of IrO2 prepared by pulsed anodic electrodeposition. Electrochemical and Solid State Letters, 2004,7(2):H5-H8.
DOI URL |
[29] |
SCHRADE M, FJELD H, FINSTAD T G , et al. Electronic transport properties of Ca2CoO3-delta (q) CoO2. Journal of Physical Chemistry C, 2014,118(6):2908-2918.
DOI URL |
[30] |
DELONGCHAMP D M, HAMMOND P T . High-contrast electrochromism and controllable dissolution of assembled Prussian blue/polymer nanocomposites. Advanced Functional Materials, 2004,14(3):224-232.
DOI URL |
[31] |
LIN F, BULT J B, NANAYAKKARA S , et al. Graphene as an efficient interfacial layer for electrochromic devices. ACS Applied Materials & Interfaces, 2015,7(21):11330-11336.
DOI URL PMID |
[32] |
LI C P, LIN F, RICHARDS R M , et al. The influence of Sol-Gel processing on the electrochromic properties of mesoporous WO3 films produced by ultrasonic spray deposition. Solar Energy Materials and Solar Cells, 2014,121:163-170.
DOI URL |
[33] | XIA X H, TU J P, ZHANG J , et al. Cobalt oxide ordered bowl-like array films prepared by electrodeposition through monolayer polystyrene sphere template and electrochromic properties. ACS Applied Materials & Interfaces, 2010,2(1):186-192. |
[34] |
FIZ R, APPEL L, GUTIERREZ-PARDO A , et al. Electrochemical energy storage applications of CVD grown niobium oxide thin films. ACS Applied Materials & Interfaces, 2016,8(33):21423-21430.
DOI URL PMID |
[35] | XU Z J, LI W F, HUANG J N , et al. Controllable and large-scale fabrication of flexible ITO-free electrochromic devices by crackle pattern technology. Journal of Materials Chemistry A, 2018,6(40):19584-19589. |
[36] | CAI G F, DARMAWAN P, CUI M Q , et al. Highly stable transparent conductive silver grid/pedot:pss electrodes for integrated bifunctional flexible electrochromic supercapacitors. Advanced Energy Materials, 2016,6(4):1501882. |
[37] |
YE T, XIANG Y, JI H , et al. Electrodeposition-based electrochromic devices with reversible three-state optical transformation by using titanium dioxide nanoparticle modified FTO electrode. RSC Advances, 2016,6(37):30769-30775.
DOI URL PMID |
[38] |
ZHOU Y L, DIAO X G, DONG G B , et al. Enhanced transmittance modulation of ITO/NiOx/ZrO2:H/WO3/ITO electrochromic devices. Ionics, 2016,22(1):25-32.
DOI URL |
[39] |
ZHANG S M, CHEN Y H, LIU H , et al. Room-temperature- formed PEDOT:PSS hydrogels enable injectable, soft, and healable organic bioelectronics. Advanced Materials, 2019, DOI: 10.1002/adma.201904752.
DOI URL PMID |
[40] |
LING H, LIU L, LEE P S , et al. Layer-by-layer assembly of PEDOT:PSS and WO3 nanoparticles: enhanced electrochromic coloration efficiency and mechanism studies by scanning electrochemical microscopy. Electrochimica Acta, 2015,174:57-65.
DOI URL |
[41] |
QU H Y, ZHANG X, ZHANG H C , et al. Highly robust and flexible WO3. 2H2O/PEDOT films for improved electrochromic performance in near-infrared region. Solar Energy Materials and Solar Cells, 2017,163:23-30.
DOI URL |
[42] |
LIU S P, WANG W . Improved electrochromic performances of WO3-based thin films via addition of CNTs. Journal of Sol-Gel Science and Technology, 2016,80(2):480-486.
DOI URL |
[43] |
LI Q, LI K R, FAN H W , et al. Reduced graphene oxide functionalized stretchable and multicolor electrothermal chromatic fibers. Journal of Materials Chemistry C, 2017,5(44):11448-11453.
DOI URL |
[44] |
SINGH R, THARION J, MURUGAN S , et al. ITO-free solution- processed flexible electrochromic devices based on PEDOT:PSS as transparent conducting electrode. ACS Applied Materials & Interfaces, 2017,9(23):19427-19435.
DOI URL PMID |
[45] |
WEN H L, ZHI F, YANG Q B , et al. Enhanced electrochromic properties by using a CeO2 modified TiO2 nanotube array transparent counter electrode. Journal of Inorganic Materials, 2012,27(1):74-78.
DOI URL |
[46] |
GHICOV A, TSUCHIYA H, HAHN R , et al. TiO2 nanotubes: H + insertion and strong electrochromic effects. Electrochemistry Communications , 2006,8(4):528-532.
DOI URL |
[47] |
WANG J M, KHOO E, LEE P S , et al. Controlled synthesis of WO3 nanorods and their electrochromic properties in H2SO4 electrolyte. Journal of Physical Chemistry C, 2009,113(22):9655-9658.
DOI URL |
[48] |
TONG Z, LIU S, LI X , et al. Achieving rapid Li-ion insertion kinetics in TiO2 mesoporous nanotube arrays for bifunctional high-rate energy storage smart windows. Nanoscale, 2018,10(7):3254-3261.
DOI URL PMID |
[49] |
PATEL K J, PANCHAL C J, DESAI M S , et al. An investigation of the insertion of the cations H +, Na +, K + on the electrochromic properties of the thermally evaporated WO3 thin films grown at different substrate temperatures. Materials Chemistry and Physics , 2010,124(1):884-890.
DOI URL |
[50] | SIAN T S, REDDY G B . Effect of adsorbed water vapor on Mg intercalation in electrochromic a-MoO3 films. Electrochimica Acta, 2004,49(28):5223-5226. |
[51] |
LI K R, SHAO Y L, LIU S Y , et al. Aluminum-ion-intercalation supercapacitors with ultrahigh areal capacitance and highly enhanced cycling stability: power supply for flexible electrochromic devices. Small, 2017,13(19):1700380.
DOI URL PMID |
[52] |
DONG D M, WANG W W, ROUGIER A , et al. Life-cycling and uncovering cation-trapping evidence of a monolithic inorganic electrochromic device: glass/ITO/WO3/LiTaO3/NiO/ITO. Nanoscale, 2018,10(35):16521-16530.
DOI URL PMID |
[53] | LIU Q R, DONG G B, CHEN Q Q , et al. Charge-transfer kinetics and cyclic properties of inorganic all-solid-state electrochromic device with remarkably improved optical memory. Solar Energy Materials and Solar Cells, 2018,174:545-553. |
[54] |
TIAN Y Y, ZHANG W K, CONG S , et al. Unconventional aluminum ion intercalation/deintercalation for fast switching and highly stable electrochromism. Advanced Functional Materials, 2015,25(36):5833-5839.
DOI URL PMID |
[55] | CHEN Y, XU Z, SUN J L . Present situation and future industrialization of large area intelligent electrochromic glass. Functional Materials, 2013,44(17):2441-2446. |
[56] | PENG M D, ZHANG Y Z, SONG L X , et al. Structure and electrochromic properties of titanium-doped WO3 thin film by sputtering. Journal of Inorganic Materials, 2017,32(3):287-292. |
[57] | CAI G F, TU J P, ZHOU D , et al. Dual electrochromic film based on WO3/polyaniline core/shell nanowire array.Solar Energy Materials and Solar Cells 2014, 122:51-58. |
[58] |
WEN R T, GRANQVIST C G, NIKLASSON G A . Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO3 thin films. Nature Materials, 2015,14(10):996.
DOI URL PMID |
[59] | BOGATI S, BASNET R, GEORG A . Iridium oxide catalyst for hybrid electrochromic device based on tetramethylthiourea (TMTU) redox electrolyte. Solar Energy Materials and Solar Cells, 2019,189:206-213. |
[60] | YOSHINO T, BABA N, ARAI K . Preparation of electrochromic irox thin film of periodic reverse electrolysis of sulfatoiridium complex solution. Journal of the Electrochemical Society, 1987,134(8B):440. |
[61] | CAI G F, WANG X, CUI M Q , et al. Electrochromo-supercapacitor based on direct growth of NiO nanoparticles. Nano Energy, 2015,12:258-267. |
[62] |
LIU X X, ZHOU A, DOU Y B , et al. Ultrafast switching of an electrochromic device based on layered double hydroxide/Prussian blue multilayered films. Nanoscale, 2015,7(40):17088-17095.
DOI URL PMID |
[63] |
CHEN Y B, BI Z J, LI X M , et al. High-coloration efficiency electrochromic device based on novel porous TiO2@Prussian blue core-shell nanostructures. Electrochimica Acta, 2017,224:534-540.
DOI URL |
[64] | HU C W, KAWAMOTO T, TANAKA H , et al. Water processable Prussian blue-polyaniline: polystyrene sulfonate nanocomposite (PB-PANI:PSS) for multi-color electrochromic applications. Journal of Materials Chemistry C, 2016,4(43):10293-10300. |
[65] |
LI F, MA D Y, QIAN J H , et al. One-step hydrothermal growth and electrochromic properties of highly stable Prussian green film and device. Solar Energy Materials and Solar Cells, 2019,192:103-108.
DOI URL |
[66] | QIAN J H, MA D Y, XU Z P , et al. Electrochromic properties of hydrothermally grown Prussian blue film and device. Solar Energy Materials and Solar Cells, 2018,177:9-14. |
[1] | 丁玲, 蒋瑞, 唐子龙, 杨运琼. MXene材料的纳米工程及其作为超级电容器电极材料的研究进展[J]. 无机材料学报, 2023, 38(6): 619-633. |
[2] | 杨卓, 卢勇, 赵庆, 陈军. X射线衍射Rietveld精修及其在锂离子电池正极材料中的应用[J]. 无机材料学报, 2023, 38(6): 589-605. |
[3] | 陈强, 白书欣, 叶益聪. 热管理用高导热碳化硅陶瓷基复合材料研究进展[J]. 无机材料学报, 2023, 38(6): 634-646. |
[4] | 林俊良, 王占杰. 铁电超晶格的研究进展[J]. 无机材料学报, 2023, 38(6): 606-618. |
[5] | 牛嘉雪, 孙思, 柳鹏飞, 张晓东, 穆晓宇. 铜基纳米酶的特性及其生物医学应用[J]. 无机材料学报, 2023, 38(5): 489-502. |
[6] | 苑景坤, 熊书锋, 陈张伟. 聚合物前驱体转化陶瓷增材制造技术研究趋势与挑战[J]. 无机材料学报, 2023, 38(5): 477-488. |
[7] | 杜剑宇, 葛琛. 光电人工突触研究进展[J]. 无机材料学报, 2023, 38(4): 378-386. |
[8] | 杨洋, 崔航源, 祝影, 万昌锦, 万青. 柔性神经形态晶体管研究进展[J]. 无机材料学报, 2023, 38(4): 367-377. |
[9] | 游钧淇, 李策, 杨栋梁, 孙林锋. 氧化物双介质层忆阻器的设计及应用[J]. 无机材料学报, 2023, 38(4): 387-398. |
[10] | 林思琪, 李艾燃, 付晨光, 李荣斌, 金敏. Zintl相Mg3X2(X=Sb, Bi)基晶体生长及热电性能研究进展[J]. 无机材料学报, 2023, 38(3): 270-279. |
[11] | 陈昆峰, 胡乾宇, 刘锋, 薛冬峰. 多尺度晶体材料的原位表征技术与计算模拟研究进展[J]. 无机材料学报, 2023, 38(3): 256-269. |
[12] | 张超逸, 唐慧丽, 李宪珂, 王庆国, 罗平, 吴锋, 张晨波, 薛艳艳, 徐军, 韩建峰, 逯占文. 新型GaN与ZnO衬底ScAlMgO4晶体的研究进展[J]. 无机材料学报, 2023, 38(3): 228-242. |
[13] | 齐占国, 刘磊, 王守志, 王国栋, 俞娇仙, 王忠新, 段秀兰, 徐现刚, 张雷. GaN单晶的HVPE生长与掺杂进展[J]. 无机材料学报, 2023, 38(3): 243-255. |
[14] | 谢兵, 蔡金峡, 王铜铜, 刘智勇, 姜胜林, 张海波. 高储能密度聚合物基多层复合电介质的研究进展[J]. 无机材料学报, 2023, 38(2): 137-147. |
[15] | 刘岩, 张珂颖, 李天宇, 周菠, 刘学建, 黄政仁. 陶瓷材料电场辅助连接技术研究现状及发展趋势[J]. 无机材料学报, 2023, 38(2): 113-124. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||