无机材料学报 ›› 2019, Vol. 34 ›› Issue (7): 775-780.DOI: 10.15541/jim20180441
所属专题: MAX相和MXene材料; 副主编黄庆研究员专辑
刘国权1,蒋小娟1,2,周洁2,李友兵2,白小静2,陈科2,黄庆2(),都时禹2()
收稿日期:
2018-09-18
修回日期:
2018-11-24
出版日期:
2019-07-20
网络出版日期:
2019-06-26
作者简介:
刘国权(1962-), 男, 副教授. E-mail:liuguoquan62@126.com
基金资助:
LIU Guo-Quan1,JIANG Xiao-Juan1,2,ZHOU Jie2,LI You-Bing2,BAI Xiao-Jing2,CHEN Ke2,HUANG Qing2(),DU Shi-Yu2()
Received:
2018-09-18
Revised:
2018-11-24
Published:
2019-07-20
Online:
2019-06-26
Supported by:
摘要:
以Mo、Y、Al和C元素粉为原料, 用放电等离子烧结技术(SPS)在1550 ℃合成了新颖的(Mo2/3Y1/3)2AlC MAX相, 并用较温和的化学刻蚀方法剥离得到相应手风琴状形貌的MXene。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和能谱分析(EDS)手段对材料的化学组成、微观结构等进行了表征, 确定最终产物为表面带有官能团的Mo1.33CT2 MXene。同时利用第一性原理密度泛函理论计算方法研究了新颖(Mo2/3Y1/3)2AlC MAX相以及对应的Mo1.33CT2 MXene的电子结构和性能, 计算结果表明两者均呈现出金属特性, 有望应用于储能、生物传感器和电催化等方面。
中图分类号:
刘国权, 蒋小娟, 周洁, 李友兵, 白小静, 陈科, 黄庆, 都时禹. 导电二维碳化钼MXene材料的制备与理论研究[J]. 无机材料学报, 2019, 34(7): 775-780.
LIU Guo-Quan, JIANG Xiao-Juan, ZHOU Jie, LI You-Bing, BAI Xiao-Jing, CHEN Ke, HUANG Qing, DU Shi-Yu. Synthesis and Theoretical Study of Conductive Mo1.33CT2 MXene[J]. Journal of Inorganic Materials, 2019, 34(7): 775-780.
图4 (Mo2/3Y1/3)2AlC 在刻蚀前后的XRD图谱, (b)是(a)的低角度放大图谱
Fig. 4 XRD patterns of (Mo2/3Y1/3)2AlC before and after etching with (b) low-angle magnification of (a)
Elastic constant/GPa | F | O | OH |
---|---|---|---|
C11 | 135 | 111 | 120 |
表1 Mo1.33CT2的弹性常数
Table 1 Elastic constant of Mo1.33CT2
Elastic constant/GPa | F | O | OH |
---|---|---|---|
C11 | 135 | 111 | 120 |
[1] |
NOVOSELOV K S, GEIM A K, MOROZOV S V , et al. Electric field effect in atomically thin carbon films. Science, 2004,306(5696):666-669.
DOI URL |
[2] |
NOVOSELOV K S, JIANG D, BOOTH T , et al. Two-dimensional atomic crystals. PNAS, 2005,102(30):10451-10453.
DOI URL |
[3] | COLEMAN J N, LOTYA M, O'NEILL A , et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science, 2011,42(18):568-571. |
[4] | MA R, SASAKI T . Nanosheets of oxides and hydroxides: ultimate 2D charge-bearing functional crystallites. Advanced Materials, 2011,42(5):5082-5104. |
[5] |
NAGUIB M, KURTOGLU M, PRESSER V , et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 2011,23(37):4248-4253.
DOI URL |
[6] |
NAGUIB M, MASHTALIR O, CARLE J , et al. Two-dimensional transition metal carbides. ACS Nano, 2012,6(2):1322-1331.
DOI URL |
[7] |
NAGUIB M, HALIM J, LU J , et al. New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. Journal of the American Chemical Society, 2013,135(43):15966-15969.
DOI URL |
[8] |
GHIDIU M, NAGUIB M, SHI C , et al. Synthesis and characterization of two-dimensional Nb4C3 (MXene). Chemical Communications, 2014,50(67):9517-9520.
DOI URL |
[9] |
LING Z, REN C E, ZHAO M Q , et al. Flexible and conductive MXene films and nanocomposites with high capacitance. PNAS, 2014,111(47):16676-16681.
DOI URL |
[10] |
LEI J C, ZHANG X, ZHOU Z . Recent advances in MXene: preparation, properties, and applications. Frontiers of Physics, 2015,10(3):276-286.
DOI URL |
[11] |
NAGUIB M, MOCHALIN V N, BARSOUM M W , et al. MXenes: a new family of two-dimensional materials. Advanced Materials, 2014,26(7):992-1005.
DOI URL |
[12] | LI ZHENG-YANG, ZHOU AI-GUO, WANG LI-BO , et al. Research progress on preparation and properties of two-dimensional crystal MXene. Bulletin of the Chinese Ceramic Society, 2013,32(8):1562-1566. |
[13] | ZHANG TIAN, PAN LI-MEI, TANG HUAN , et al. Preparation, delamination and electrochemical performance of two-dimensional crystal Ti2CTx MXene. Journal of Synthetic Crystals, 2016,45(6):1514-1519. |
[14] |
ZHANG JIAN-FENG, CAO HUI-YANG, WANG HONG-BING . Research progress of novel two-dimensional material MXene. Journal of Inorganic Materials, 2017,32(6):561-570.
DOI URL |
[15] |
FENG L, ZHA X H, LUO K , et al. Structures and mechanical and electronic properties of the Ti2CO2, MXene incorporated with neighboring elements (Sc, V, B and N). Journal of Electronic Materials, 2017,46(4):2460-2466.
DOI URL |
[16] |
ALHABEB M, MALESKI K, ANASORI B , et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chemistry of Materials, 2017,29(18):7633-7644.
DOI URL |
[17] |
XUAN J, WANG Z, CHEN Y , et al. Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance. Angewandte Chemie International Edition, 2016,55(47):14569-14574.
DOI URL |
[18] |
URBANKOWSKI P, ANASORI B, MAKARYAN T , et al. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale, 2016,8(22):11385-11391.
DOI URL |
[19] |
TOTH L E . High superconducting transition temperatures in the molybdenum carbide family of compounds. Journal of the Less Common Metals, 1967,13(1):129-131.
DOI URL |
[20] |
HU C, LI C, HALIM J , et al. On the rapid synthesis of the ternary Mo2GaC. Journal of the American Ceramic Society, 2015,98(9):2713-2715.
DOI URL |
[21] |
HU C, LAI C C, TAO Q , et al. Mo2Ga2C: a new ternary nanolaminated carbide. Chemical Communications, 2015,51(30):6560-6563.
DOI URL |
[22] |
HALIM J, KOTA S, LUKATSKAYA M R , et al. Synthesis and characterization of 2D molybdenum carbide (MXene). Advanced Functional Materials, 2016,26(18):3118-3127.
DOI URL |
[23] |
ANASORI B, HALIM J, LU J , et al. Mo2TiAlC2: a new ordered layered ternary carbide. Scripta Materialia, 2015,101:5-7.
DOI URL |
[24] |
ZHA X H, YIN J, ZHOU Y , et al. Intrinsic structural, electrical, thermal, and mechanical properties of the promising conductor Mo2C MXene. Journal of Physical Chemistry C, 2016,120(28):15082-15088.
DOI URL |
[25] |
MESHKIAN R, TAO Q, DAHLQVIST M , et al. Theoretical stability and materials synthesis of a chemically ordered MAX phase, Mo2ScAlC2, and its two-dimensional derivate Mo2ScC2, MXene. Acta Materialia, 2017,125:476-480.
DOI URL |
[26] |
TAO Q, DAHLQVIST M, LU J , et al. Two-dimensional Mo1. 33C MXene with divacancy ordering prepared from parent 3D laminate with in-plane chemical ordering. Nature Communications, 2017,8:1-7.
DOI URL |
[27] | DAHLQVIST M, LU J, MESHKIAN R , et al. Prediction and synthesis of a family of atomic laminate phases with Kagomé-like and in-plane chemical ordering. Science Advance, 2017,3(7):1-9. |
[28] | KHAZAEI M, ARAI M, SASAKI T , et al. Trends in electronic structures and structural properties of MAX phases: a first- principles study on M2AlC (M = Sc, Ti, Cr, Zr, Nb, Mo, Hf, or Ta), M2AlN, and hypothetical M2AlB phases. Journal of Physics Condensed Matter, 2014,26(50):1-27. |
[29] | ROKNUZZAMAN M, HADI M A, ALI M A , et al. First hafnium- based MAX phase in the 312 family, Hf3AlC2: a first-principles study. Journal of Alloys & Compounds, 2017,727:616-626. |
[30] |
DING H, GLANDUT N, FAN X , et al. First-principles study of hydrogen incorporation into the MAX phase Ti3AlC2. International Journal of Hydrogen Energy, 2016,41(15):6387-6393.
DOI URL |
[31] |
HADI M A, ROKNUZZAMAN M, PARVIN F , et al. New MAX phase superconductor Ti2GeC: a first-principles study. Journal of Scientific Research, 2013,6(1):11-27.
DOI URL |
[32] |
LIND H, HALIM J, SIMAK S I , et al. Investigation of vacancy- ordered Mo1.33C, MXene from first principles and X-ray photoelectron spectroscopy. Phys. Rev.Materials, 2017,1:044002.
DOI URL |
[33] | ZHA X H, LUO K, LI Q W , et al. Role of the surface effect on the structural,electronic and mechanical properties of the carbide MXenes. Europhysics Letters, 2015, 111(2): 26007-1-6. |
[1] | 丁玲, 蒋瑞, 唐子龙, 杨运琼. MXene材料的纳米工程及其作为超级电容器电极材料的研究进展[J]. 无机材料学报, 2023, 38(6): 619-633. |
[2] | 张守超, 陈洪雨, 刘洪飞, 杨羽, 李欣, 刘德峰. 6H-SiC中子辐照肿胀高温回复及光学特性研究[J]. 无机材料学报, 2023, 38(6): 678-686. |
[3] | 杨颖康, 邵怡晴, 李柏良, 吕志伟, 王路路, 王亮君, 曹逊, 吴宇宁, 黄荣, 杨长. Cl掺杂对CuI薄膜发光性能增强研究[J]. 无机材料学报, 2023, 38(6): 687-692. |
[4] | 王世怡, 冯爱虎, 李晓燕, 于云. Fe3O4负载Ti3C2Tx对Pb(II)的吸附性能研究[J]. 无机材料学报, 2023, 38(5): 521-528. |
[5] | 文志勤, 黄彬荣, 卢涛仪, 邹正光. 压力对PbTiO3结构和热物性质影响的第一性原理研究[J]. 无机材料学报, 2022, 37(7): 787-794. |
[6] | 孙铭, 邵溥真, 孙凯, 黄建华, 张强, 修子扬, 肖海英, 武高辉. RGO/Al复合材料界面性质第一性原理研究[J]. 无机材料学报, 2022, 37(6): 651-659. |
[7] | 肖美霞, 李苗苗, 宋二红, 宋海洋, 李钊, 毕佳颖. 表面端基卤化Ti3C2 MXene应用于锂离子电池高容量电极材料的研究[J]. 无机材料学报, 2022, 37(6): 660-668. |
[8] | 袁罡, 马新国, 贺华, 邓水全, 段汪洋, 程正旺, 邹维. 平面应变对二维单层MoSi2N4能带结构和光电性质的影响[J]. 无机材料学报, 2022, 37(5): 527-533. |
[9] | 丁健翔, 张凯歌, 柳东明, 郑伟, 张培根, 孙正明. Ti3AlC2陶瓷及其衍生物Ti3C2Tx增强的Ag基电接触材料[J]. 无机材料学报, 2022, 37(5): 567-573. |
[10] | 白志强, 赵璐, 白云峰, 冯锋. MXenes的制备、性质及其在肿瘤诊疗中的研究进展[J]. 无机材料学报, 2022, 37(4): 361-375. |
[11] | 冯清影, 刘东, 张莹, 冯浩, 李强. 太阳能驱动的两步热化学循环二氧化碳裂解反应活性材料的热力学与第一性原理评价[J]. 无机材料学报, 2022, 37(2): 223-229. |
[12] | 彭军辉, TIKHONOV Evgenii. 空位对Hf-Ta-C体系的结构、力学性质及电子性质影响的第一性原理研究[J]. 无机材料学报, 2022, 37(1): 51-57. |
[13] | 李友兵, 秦彦卿, 陈科, 陈露, 张霄, 丁浩明, 李勉, 张一鸣, 都时禹, 柴之芳, 黄庆. 熔盐法合成纳米层状Sc2SnC MAX相[J]. 无机材料学报, 2021, 36(7): 773-778. |
[14] | 张晓君, 李佳乐, 邱吴劼, 杨淼森, 刘建军. 钠离子电池正极材料P2-Nax[Mg0.33Mn0.67]O2的电化学活性研究[J]. 无机材料学报, 2021, 36(6): 623-628. |
[15] | 闫宇星, 汪帆, 张珏璇, 李付绍. 空位缺陷对ZnNb2O6光电特性影响的第一性原理研究[J]. 无机材料学报, 2021, 36(3): 269-276. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||