[1] |
BARSOUM M W.The MN+1AXN, phases: a new class of solids: thermodynamically stable nanolaminates. Progress in Solid State Chemistry, 2000, 28(1): 201-281.
|
[2] |
BARSOUM M W, EL-RAGHY T.Synthesis and characterization of a remarkable ceramic: Ti3SiC2. Journal of the American Ceramic Society, 1996, 79(7): 1953-1956.
|
[3] |
SUN Z M.Progress in research and development on MAX phases: a family of layered ternary compounds. International Materials Reviews, 2011, 56(3): 143-166.
|
[4] |
CHING W Y, MO Y, ARYAL S, et al.Intrinsic mechanical properties of 20 MAX-phase compounds. Journal of the American Ceramic Society, 2013, 96(7): 2292-2297.
|
[5] |
SCABAROZI T H, AMINI S, FINKEL P, et al. Electrical, thermal,elastic properties of the MAX-phase Ti2SC. Journal of Applied Physics, 2008, 104(3): 033502-1-5.
|
[6] |
SCABAROZI T, GANGULY A, HETTINGER J D, et al.Electronic and thermal properties of Ti3Al(C0. 5, N0.5)2, Ti2Al(C0. 5, N0. 5), and Ti2AlN. Journal of Applied Physics, 104(7): 073713-1-6.
|
[7] |
HETTINGER J D, LOFLAND S E, FINKEL P, et al. Electrical transport, thermal transport,elastic properties of M2AlC, (M = Ti, Cr, Nb,V). Physical Review B, 2005, 72(11): 115120-1-6.
|
[8] |
LIU G, CHEN K, ZHOU H, et al.Layered growth of Ti2AlC and
|
|
Ti3AlC2 in combustion synthesis. Materials Letters, 2007, 61(3): 779-784.
|
[9] |
BARSOUM M W, EL-RAGHY T, ALI M.Processing and characterization of Ti2AlC, Ti2AlN, and Ti2AlC0. 5N0. 5. Metallurgical and Materials Transactions A, 2000, 31(7): 1857-1865.
|
[10] |
FASHANDI H, DAHLQVIST M, LU J, et al.Synthesis of Ti3AuC2, Ti3Au2C2 and Ti3IrC2 by noble metal substitution reaction in Ti3SiC2 for high-temperature-stable Ohmic contacts to SiC. Nature materials, 2017, 16(8): 814-818.
|
[11] |
FASHANDI H, LAI C C, DAHLQVIST M, et al.Ti2Au2C and Ti3Au2C2 formed by solid state reaction of gold with Ti2AlC and Ti3AlC2. Chemical Communications, 2017, 53(69): 9554-9557.
|
[12] |
LU C, WANG G, YANG G, et al.Substitution behavior of Ag atoms in the Ti2AlC ceramic. Journal of the American Ceramic Society, 2017, 100(2): 732-738.
|
[13] |
CLARK S J, SEGALL M D, PICKARD C J, et al.First principles methods using CASTEP. Zeitschrift für Kristallographie- Crystalline Materials, 2005, 220(5/6): 567-570.
|
[14] |
SEGALL M D, LINDAN P J D, PROBERT M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code. Journal of Physics: Condensed Matter, 2002, 14(11): 2717.
|
[15] |
FRANK W, ELSÄSSER C, FÄHNLE M. Ab initio force-constant method for phonon dispersions in alkali metals. Physical Review Letters, 1995, 74: 1791-1794.
|
[16] |
PARLINSKI K, LI Z Q, KAWAZOE Y.First-principles determination of the soft mode in cubic ZrO2. Physical Review Letters, 1997, 78: 4063-4066.
|
[17] |
BORN M.On the stability of crystal lattices. I. Mathematical Proceedings of the Cambridge Philosophical Society, 1940, 36(2): 160-172.
|