无机材料学报 ›› 2018, Vol. 33 ›› Issue (2): 198-205.DOI: 10.15541/jim20170582
李红霞
收稿日期:
2016-07-30
修回日期:
2016-12-05
出版日期:
2018-02-26
网络出版日期:
2018-01-26
作者简介:
李红霞(1965),女,博士,教授级高级工程师.E-mail:lihongx0622@126.com
基金资助:
LI Hong-Xia
Received:
2016-07-30
Revised:
2016-12-05
Published:
2018-02-26
Online:
2018-01-26
Supported by:
摘要:
本文简要介绍了中国耐火材料现状, 结合高温工业技术发展需求, 阐述了耐火材料的发展态势和发展方向。指出结构功能一体化设计与制备是以长寿化、功能化、轻量化、智能化、绿色化为特征的先进耐火材料发展的核心。结合新型高效隔热耐火材料、钢铁冶金连铸用先进功能耐火材料的研究, 介绍了先进耐火材料的组成-结构-性能-功能一体化设计理念与制备技术, 采用有限元数值模拟、融合先进陶瓷技术及梯度多层复合设计, 实现了关键服役性能的最优化设计与制备。
中图分类号:
李红霞. 耐火材料发展概述[J]. 无机材料学报, 2018, 33(2): 198-205.
LI Hong-Xia. Development Overview of Refractory Materials[J]. Journal of Inorganic Materials, 2018, 33(2): 198-205.
图1 纤维增强二氧化硅-高温烟尘复合隔热材料的微结构及热导率随温度的变化[41]
Fig. 1 Microstructure and effects of temperature on thermal conductivity of developed ceramic fiber enforced nano-SiO2- fumed-corundum insulation composite materials[41]
Developed composite plate | Developed plate with nano-sized pores | A Company | B Company | Porextherm plate with nano-sized pores | |
---|---|---|---|---|---|
Thermal conductivity (1000℃)/(W·m-1·K-1) | 0.087 | 0.063 | 0.050(800℃) | — | 0.062 |
Bulk density/(g·cm-3) | 0.55-0.65 | 0.35-0.4 | 0.30-0.35 | — | 0.35-0.45 |
Service temperature/℃ | 1800 | 1100 | 850 | 650 | 1100 |
Linear change/% (1000℃, 24 h) | ~1.5 | <2 | — | — | <2 |
表1 纳/微米多孔隔热材料的性能[42]
Table 1 Properties of developed insulation composite material with micro/nano-sized pores[42]
Developed composite plate | Developed plate with nano-sized pores | A Company | B Company | Porextherm plate with nano-sized pores | |
---|---|---|---|---|---|
Thermal conductivity (1000℃)/(W·m-1·K-1) | 0.087 | 0.063 | 0.050(800℃) | — | 0.062 |
Bulk density/(g·cm-3) | 0.55-0.65 | 0.35-0.4 | 0.30-0.35 | — | 0.35-0.45 |
Service temperature/℃ | 1800 | 1100 | 850 | 650 | 1100 |
Linear change/% (1000℃, 24 h) | ~1.5 | <2 | — | — | <2 |
图3 氮化硅/碳化硅复相多孔陶瓷的产品(a)和SEM照片(b)[42]
Fig. 3 The product photo and SEM image of porous silicon nitride-silicon carbide composites[42] (a) Product(STIC-n); (b) SEM photograph
图5 Al-Si复合粉抗氧化剂对低碳Al2O3-C材料微结构和性能的影响[44]
Fig. 5 The influence of Al-Si alloy antioxidant additives on the microstructure and properties of Al2O3-C refractories[44] (a) Fibrous substance formed by antioxidant reaction; (b) Narrowing influence on the pores distribution; (c) Effect on HMOR
图6 (a)不同催化树脂的残碳率, (b)裂解生成的纤维碳SEM照片和(c)纤维碳TEM照片[45]
Fig. 6 (a) Char yield of phenolic resins, (b) SEM image of carbon fiber and (c)TEM image of carbon fiber[45]
图7 (a)膨胀石墨的SEM照片, (b)纳米碳包覆氧化铝复合粉体的SEM照片和(c)形成的纳米碳的TEM照片[4]
Fig. 7 (a) SEM image of expanded graphite, (b) SEM image of alumina composite powder covered by nano-carbon and (c) TEM image of nano-carbon[4]
图9 应力缓释区对温度场和最大热应力的影响[42]
Fig. 9 Effects of stress buffer release area with micro-porous structure on temperature field and maximum thermal stress[42]
[1] | 李红霞. 高温工业的发展与耐火材料的技术进步. 耐火材料, 2006, 40(增刊): 4-8. |
[2] | 陈肇友, 李红霞. 镁资源的综合利用及镁质耐火材料的发展. 耐火材料, 2005, 39(1): 6-15. |
[3] | LI H X, LIU G Q.Current situation and development of refractories for clean steel production.China’s Refractories, 2013, 22(3): 1-6. |
[4] | 吴小贤, 李红霞, 刘国齐, 等. 高能球磨合成纳米碳包覆α-Al2O3复合粉体. 无机材料学报, 2013, 28(3): 261-266. |
[5] | 刘辉敏, 李红霞, 洪彦若, 等. 复合结构长水口热应力有限元分析. 硅酸盐学报, 2009, 31(12): 2000-2006. |
[6] | SONG Y Y, LIU G Q, LI H X, et al. Influence of ladle purging plug airway on flow properties of liquid steel. Advanced Materials Research, 2012, 472-475: 2581-2587. |
[7] | LI H X, YANG B, LIU G Q, et al.Gradient Functional Refractories for High Efficient Con-casting (invited). Proceedings of the 6th International Congress on the Science and Technology of Steelmaking(I), Beijing, China, 2015: 4-8. |
[8] | 张洪哲, 李富朝, 孙庚辰, 等. 高风温长寿热风炉用高效小孔径格子砖的设计及选材. 耐火材料, 2015, 49(5): 376-380. |
[9] | 王佳平, 金广湘, 王勇峰, 等.新型复相氮化物结合碳化硅耐火材料在干熄炉斜道区的应用和分析. 西安: 2016年(第十届)焦化节能环保及干熄焦技术研讨会论文集, 2016: 96-101. |
[10] | YIN H J, ZHANG T, WU A J, et al. Effect of M-ZrO2 on sintering behavior and thermal shock resistance of dense Cr2O3 material. Advanced Materials Research, 2011, 199-200: 1928-1931. |
[11] | 孙红刚, 陈杰, 范志辉, 等. 新型高铬砖在GE气化炉的试用研究. 大氮肥, 2011, 34(增刊2): 108-111. |
[12] | 耿可明, 王金相. Cr2O3在水煤浆气化炉过程中的行为. 耐火材料, 2015, 49(1): 68-71. |
[13] | 李红霞, 王金相. 水泥窑用碱性耐火材料无铬化的技术进展. 中国水泥, 2004, 10: 79-82. |
[14] | LI H X, LIU J, FENG H X, et al.Development and application of chrome-free refractory materials for RH degasser.China's Refractories, 2014, 23(4): 1-5, 12. |
[15] | GE H B, WANG G, YUAN B, et al.Fabrication and microstructure of porous SiC ceramics using suspension emulsions as pore-forming agents.Ceramics International, 2014, 40(8): 11705-11711. |
[16] | WU H B, HUANG Z R, WANG G, et al.Alumina heat insulator through composite poring mechanisms.International Journal of Applied Ceramic Technology, 2015, 11(6): 1061-1067. |
[17] | 徐殿利. 2016年全国耐火材料行业生产运行情况及2017年耐火材料市场预测分析. 北京: 2017年耐火材料行业协会年会报告会, 2017: 1-8. |
[18] | 江东亮, 袁渭康, 钱锋, 等. 我国高耗能工业高温热工装备节能科技发展战略研究. 北京: 科学出版社, 2017: 50-55. |
[19] | 李红霞, 杨彬. 中国石墨资源和产业状况概述. 郑州: 耐火原料学术交流会论文集, 2011: 1-11. |
[20] | 刘俊光, 魏同. 我国耐火材料工业节能降耗技术及发展方向. 太原: 新形势下全国耐火原料发展战略研讨会论文集, 2014: 193-194. |
[21] | HEMRICK J G, HAYDE H W, ANGELINI, et al. Refractories for industrial processing: opportunities for improved energy efficiency.Industrial Technologies Program, 2005, 1: 4-6. |
[22] | HEMRICK J G.Improved refractories=energy saving.American Ceramic Society Bulletin, 2013, 92(7): 32-35. |
[23] | HEADRICK W L.Towards a “greener” future with advanced refractories.American Ceramic Society Bulletin, 2013, 92(7): 28-31. |
[24] | SEMLER C E.Refractories—the world most important but least known products.American Ceramic Society Bulletin, 2014, 93(2): 34-39. |
[25] | GUIRE E D.State raw materials 2013-overview and frontiers.American Ceramic Society Bulletin, 2013, 92(6): 24-28. |
[26] | CERAME-UNIE.The Ceramic Industry Roadmap. Paving the Way to 2050, 2012, 1: 40-45. |
[27] | COHEN L.Challenge and opportunities for refractory manufacturers in the UK.Refractories Engineer, 2013, 11: 12-17. |
[28] | JARVIS D R.An overview of the current 2013 global refractories industry.International Ceramic Review, 2013, 62(4): 262-266. |
[29] | XU D L, CUI Y S, YANG K, et al.On the future of Chinese cement industry.Cement and Concrete Research, 2015, 78: 2-13. |
[30] | 殷瑞钰. 高效率、低成本洁净钢“制造平台”集成技术及其动态运行. 钢铁, 2012, 47(1): 1-12. |
[31] | LI HONGXIA.Development of Refractory Industry in China with Restricts of Resource, Energy and Environment Factors. Proceedings of UNITECR 2011, Kyoto, Japan, 2011: 122-123. |
[32] | 李红霞. 经济下行时中国耐火材料行业发展的思考. 耐火材料, 2012, 46(5): 321-324. |
[33] | JAKOBSEN D, GOTSCHEL I, ROOSEN A.Manufacture of multilayer composite with optimized thermal and chemical properties via the tape casting process.Refractories Worldforum, 2016, 8(2): 86-94. |
[34] | 蔡斌利, 李红霞, 赵世贤, 等. 水煤浆气化炉中O2分压和Cr2O3稳定性的热力学计算. 耐火材料, 2016, 50(6): 411-415. |
[35] | YANG W G, LIU G Q, LI H X, et al.Thermal Stress Distribution in Stopper by Finite Element Analysis. Proceedings of UNITECR 2013, Columbia, Canada, 2013: 154-158. |
[36] | 李红霞. 对耐火材料的性能调控及设计的一些思考. 耐火材料, 2013, 47(增刊1): 1-2. |
[37] | SEMLER C E.Review of advances in refractories.International Ceramic Review, 2011, 2: 77-81. |
[38] | SUGITA K.The past and future of refractories technology.International Ceramic Review, 2012, 1: 8-12. |
[39] | SEMLER C E.The advancement of refractories technology never stops.Refractories Worldforum, 2014, 6(4): 27-31. |
[40] | PHILIP A.An introduction to Alkaline Silicate wool products. Proceedings of the Institute of Industrial Engineers Asian Conference 2013, Taipei, 2013: 100-105. |
[41] | 孙小飞, 王刚, 袁波. 高铝纤维复合SiO2质纳米微孔隔热材料研究. 耐火材料, 2014, 48(6): 406-408. |
[42] | LI H X.Some design consideration of advanced refractories.Refractories Worldforum, 2017, 9(4): 99-105. |
[43] | 张琪. 隔热材料抗冰晶石蒸汽侵蚀机理研究. 洛阳: 中钢集团洛阳耐火材料研究院硕士学位论文, 2016. |
[44] | 刘国齐. Al2O3-Al-C功能耐火材料的热变化和应用研究. 北京: 北京科技大学博士学位论文, 2006. |
[45] | 吴小贤. 含纳米碳新型低碳铝碳耐火材料研究. 北京: 北京科技大学博士学位论文, 2013. |
[1] | 丁玲, 蒋瑞, 唐子龙, 杨运琼. MXene材料的纳米工程及其作为超级电容器电极材料的研究进展[J]. 无机材料学报, 2023, 38(6): 619-633. |
[2] | 杨卓, 卢勇, 赵庆, 陈军. X射线衍射Rietveld精修及其在锂离子电池正极材料中的应用[J]. 无机材料学报, 2023, 38(6): 589-605. |
[3] | 陈强, 白书欣, 叶益聪. 热管理用高导热碳化硅陶瓷基复合材料研究进展[J]. 无机材料学报, 2023, 38(6): 634-646. |
[4] | 林俊良, 王占杰. 铁电超晶格的研究进展[J]. 无机材料学报, 2023, 38(6): 606-618. |
[5] | 牛嘉雪, 孙思, 柳鹏飞, 张晓东, 穆晓宇. 铜基纳米酶的特性及其生物医学应用[J]. 无机材料学报, 2023, 38(5): 489-502. |
[6] | 苑景坤, 熊书锋, 陈张伟. 聚合物前驱体转化陶瓷增材制造技术研究趋势与挑战[J]. 无机材料学报, 2023, 38(5): 477-488. |
[7] | 杜剑宇, 葛琛. 光电人工突触研究进展[J]. 无机材料学报, 2023, 38(4): 378-386. |
[8] | 杨洋, 崔航源, 祝影, 万昌锦, 万青. 柔性神经形态晶体管研究进展[J]. 无机材料学报, 2023, 38(4): 367-377. |
[9] | 游钧淇, 李策, 杨栋梁, 孙林锋. 氧化物双介质层忆阻器的设计及应用[J]. 无机材料学报, 2023, 38(4): 387-398. |
[10] | 林思琪, 李艾燃, 付晨光, 李荣斌, 金敏. Zintl相Mg3X2(X=Sb, Bi)基晶体生长及热电性能研究进展[J]. 无机材料学报, 2023, 38(3): 270-279. |
[11] | 陈昆峰, 胡乾宇, 刘锋, 薛冬峰. 多尺度晶体材料的原位表征技术与计算模拟研究进展[J]. 无机材料学报, 2023, 38(3): 256-269. |
[12] | 张超逸, 唐慧丽, 李宪珂, 王庆国, 罗平, 吴锋, 张晨波, 薛艳艳, 徐军, 韩建峰, 逯占文. 新型GaN与ZnO衬底ScAlMgO4晶体的研究进展[J]. 无机材料学报, 2023, 38(3): 228-242. |
[13] | 齐占国, 刘磊, 王守志, 王国栋, 俞娇仙, 王忠新, 段秀兰, 徐现刚, 张雷. GaN单晶的HVPE生长与掺杂进展[J]. 无机材料学报, 2023, 38(3): 243-255. |
[14] | 谢兵, 蔡金峡, 王铜铜, 刘智勇, 姜胜林, 张海波. 高储能密度聚合物基多层复合电介质的研究进展[J]. 无机材料学报, 2023, 38(2): 137-147. |
[15] | 刘岩, 张珂颖, 李天宇, 周菠, 刘学建, 黄政仁. 陶瓷材料电场辅助连接技术研究现状及发展趋势[J]. 无机材料学报, 2023, 38(2): 113-124. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||