无机材料学报 ›› 2018, Vol. 33 ›› Issue (2): 138-146.DOI: 10.15541/jim20170363
范宇驰1, 王连军2, 江莞1,2
收稿日期:
2017-08-07
修回日期:
2017-09-23
出版日期:
2018-02-26
网络出版日期:
2018-01-26
作者简介:
范宇驰(1984),男,研究员.Email:yuchifan@dhu.edu.cn
基金资助:
FAN Yu-Chi1, WANG Lian-Jun2, JIANG Wan1,2
Received:
2017-08-07
Revised:
2017-09-23
Published:
2018-02-26
Online:
2018-01-26
Supported by:
摘要:
现代社会对于氧化物陶瓷材料的性能不断提出更高的要求, 因此对于氧化物陶瓷复合材料的研究显得尤为重要。石墨烯作为一种具有卓越性能的二维碳材料, 非常适合作为增强相用于提高氧化物陶瓷复合材料的力学和电性能。本文系统总结了过去十年来基于石墨烯的氧化物陶瓷复合材料的相关研究和报道, 从石墨烯/氧化物陶瓷复合材料的制备、烧结、微观结构到性能进行了比较全面的介绍, 从中可以看出: (1)石墨烯的引入使得氧化物陶瓷的力学性能在强度、断裂韧性、应变容忍度等方面获得全面的提升; (2)在电性能方面, 石墨烯/氧化物陶瓷复合材料不仅具有低渗流阈值和良好的电导, 而且其载流子类型还可以通过调节氧化物基体中的氧空位浓度来调控。因此, 基于石墨烯的氧化物陶瓷复合材料有望作为一种高性能结构功能一体化陶瓷获得应用。
中图分类号:
范宇驰, 王连军, 江莞. 基于石墨烯的结构功能一体化氧化物陶瓷复合材料: 从制备到性能[J]. 无机材料学报, 2018, 33(2): 138-146.
FAN Yu-Chi, WANG Lian-Jun, JIANG Wan. Graphene Based Oxide Ceramic Composites with High Mechanical and Functional Performance: from Preparation to Property[J]. Journal of Inorganic Materials, 2018, 33(2): 138-146.
图1 从石墨片层中剥离石墨烯的示意图[8]
Fig. 1 Schematic illustration of exfoliating GNSs from graphite pallets [8] The arrows indicate the shear effect in a ball milling process
图2 利用机械剥离法制备的石墨烯/氧化铝复合材料断面的SEM照片[8-9]
Fig. 2 SEM image of fracture surface for graphene nanosheet/ Al2O3 composite prepared via mechanical exfoliation[8-9]
图4 二维材料石墨烯能够更有效的抑制晶粒粗化[21] 除了晶粒大小, 石墨烯对陶瓷基体的影响还体现在晶粒的微观形貌上[21]。以氧化铝为例, 单纯的氧化铝陶瓷烧结之后, 晶粒会呈现不同的楞面, 这是晶界移动达到热力学平衡状态的结果。本课题组发现在石墨烯/氧化铝复合材料中, 很难找到这种含有明显楞面的晶粒, 从复相陶瓷的断面上观察发现大多数晶粒呈现出比较圆滑的表面, 即便进一步提高烧结温度结果仍然如此。研究还发现, 在烧结致密的氧化铝基体中存在一些小于原始粉体粒径的晶粒, 从晶界曲率判断本应该在二次再结晶过程中被周围较大的晶粒吸收, 但由于晶界上存在石墨烯而被完好的保存下来(图5)。这一现象说明由于石墨烯的柔韧性和强大的阻碍晶界移动的能力, 使得在陶瓷复合材料整体达到致密的情况下大量的晶面还未达到热力学平衡的状态。这一独特的结构在其它材料如碳纳米管复合陶瓷材料中并未出现, 这是石墨烯陶瓷复合材料的微观结构特点。
Fig. 4 Schematic illustration showing 2D graphene can retard the coarsening of grain most effectively[21] (a), (b), (c) show the situation for nano-particle, 1D inclusion and 2D inclusion, respectively
图5 石墨烯阻碍晶界移动达到热力学平衡状态[21]
Fig. 5 Graphene prohibits grain boundary reaching dynamic balance[21] The yellow and white arrows indicate grain boundaries with and without graphene, respectively
图6 单相氧化铝(黑)、石墨烯/氧化铝复合材料(红)以及烧蚀后氧化铝复合材料(蓝)在四点抗弯试验中的应力-应变曲线[22]
Fig. 6 Stain-stress plots of monolithic Al2O3 ceramic (black), FLG/Al2O3 composite before (red) and after (blue) burn-off for 20 h during four-point bending test, respectively[22]
Matrix | Raw material of graphene* | Mixing method | Percolation threshold | Maximum electrical conductivity | Reference |
---|---|---|---|---|---|
Al2O3 | GO | Heteroaggregation | 0.38vol% | 1038.15 S•m-1 for 2.35vol% | [16] |
Al2O3 | GO | Heteroaggregation | 0.22wt% | 11.1 S•m-1 for 0.45wt% | [31] |
Al2O3 | G | Stirring + Ball milling | 7.1vol% | 20.1 S•m-1 for 15vol% | [32] |
Al2O3 | G | Planetary ball milling | <0.5vol% | 123.3 S•m-1 for 2vol% | [33] |
Al2O3 | GN | Attrition ball milling | 3vol% | 103 S•m-1 for 15vol% | [34] |
Al2O3 | EG | Planetary ball milling | 3vol% | 5709 S•m-1 for 15vol% | [8] |
Al2O3 | EG | Attrition ball milling | 4.7-5.7vol% | 9.6×10-2 S•m-1 for 9.4vol% | [35] |
YSZ | GO | Sonication | 2.5vol% | 1.2×104 S•m-1 for 4.1vol% | [36] |
SiO2 | GO | Heteroaggregation | <0.58wt% | 10-2 S•m-1 for 0.98wt% | [37] |
ZrO2 | GN | Planetary ball milling | <1wt% | 98 S•m-1 for 3wt% | [38] |
表1 一些石墨烯/氧化物陶瓷复合材料的电性能比较
Table 1 Comparison of some reported graphene/oxide ceramic composites
Matrix | Raw material of graphene* | Mixing method | Percolation threshold | Maximum electrical conductivity | Reference |
---|---|---|---|---|---|
Al2O3 | GO | Heteroaggregation | 0.38vol% | 1038.15 S•m-1 for 2.35vol% | [16] |
Al2O3 | GO | Heteroaggregation | 0.22wt% | 11.1 S•m-1 for 0.45wt% | [31] |
Al2O3 | G | Stirring + Ball milling | 7.1vol% | 20.1 S•m-1 for 15vol% | [32] |
Al2O3 | G | Planetary ball milling | <0.5vol% | 123.3 S•m-1 for 2vol% | [33] |
Al2O3 | GN | Attrition ball milling | 3vol% | 103 S•m-1 for 15vol% | [34] |
Al2O3 | EG | Planetary ball milling | 3vol% | 5709 S•m-1 for 15vol% | [8] |
Al2O3 | EG | Attrition ball milling | 4.7-5.7vol% | 9.6×10-2 S•m-1 for 9.4vol% | [35] |
YSZ | GO | Sonication | 2.5vol% | 1.2×104 S•m-1 for 4.1vol% | [36] |
SiO2 | GO | Heteroaggregation | <0.58wt% | 10-2 S•m-1 for 0.98wt% | [37] |
ZrO2 | GN | Planetary ball milling | <1wt% | 98 S•m-1 for 3wt% | [38] |
图7 (a)石墨烯/氧化铝复合材料的电导随石墨烯含量的变化关系; (b)霍尔系数随着石墨烯含量的变化关系[16]
Fig. 7 (a) Electrical conductivity of graphene/Al2O3 composites as a function of filler volume fraction; (b) Hall coefficient plotted against filler volume fraction[16]
[1] | ZAPATA-SOLVAS E, GOMEZ-GARCIA D, DOMINGUEZ- RODRIGUEZ A.Towards physical properties tailoring of carbon nanotubes-reinforced ceramic matrix composites.J. Eur. Ceram. Soc, 2012, 32(12): 3001-3020. |
[2] | LEE C, WEI X D, KYSAR J W, et al.Measurement of the elastic properties and intrinsic strength of monolayer graphene.Science, 2008, 321(5887): 385-388. |
[3] | GEIM A K, NOVOSELOV K S.The rise of graphene.Nat. Mater., 2007, 6(3): 183-191. |
[4] | HUANG X, QI X Y, BOEY F, et al.Graphene-based composites.Chem. Soc. Rev., 2012, 41(2): 666-686. |
[5] | NOVOSELOV K S, GEIM A K, MOROZOV S V, et al.Electric field effect in atomically thin carbon films.Science, 2004, 306(5696): 666-669. |
[6] | BURMEISTER C F, KWADE A.Process engineering with planetary ball mills.Chem. Soc. Rev., 2013, 42(18): 7660-7667. |
[7] | HERNANDEZ Y, NICOLOSI V, LOTYA M, et al.High-yield production of graphene by liquid-phase exfoliation of graphite.Nat. Nanotechnol., 2008, 3(9): 563-568. |
[8] | FAN Y C, WANG L J, LI J L, et al.Preparation and electrical properties of graphene nanosheet/Al2O3 composites.Carbon, 2010, 48(6): 1743-1749. |
[9] | LIU X, FAN Y C, LI J L, et al.Preparation and mechanical properties of graphene nanosheet reinforced alumina composites.Adv. Eng. Mater., 2015, 17(1): 28-35. |
[10] | HUMMERS W S, OFFEMAN R E.Preparation of graphitic oxide.J. Am. Chem. Soc., 1958, 80(6): 1339. |
[11] | MARCANO D C, KOSYNKIN D V, BERLIN J M, et al.Improved synthesis of graphene oxide.ACS Nano, 2010, 4(8): 4806-4814. |
[12] | CHEN J, YAO B W, LI C, et al.An improved Hummers method for eco-friendly synthesis of graphene oxide.Carbon, 2013, 64: 225-229. |
[13] | YU H T, ZHANG B W, BULIN C K, et al.High-efficient synthesis of graphene oxide based on improved hummers method.Sci. Rep.-Uk, 2016, 6: 36143. |
[14] | YANG D, VELAMAKANNI A, BOZOKLU G, et al.Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy.Carbon, 2009, 47(1): 145-152. |
[15] | SUN J, GAO L.Development of a dispersion process for carbon nanotubes in ceramic matrix by heterocoagulation.Carbon, 2003, 41(5): 1063-1068. |
[16] | FAN Y C, JIANG W, KAWASAKI A.Highly conductive few-layer graphene/Al2O3 nanocomposites with tunable charge carrier type.Adv. Funct. Mater., 2012, 22(18): 3882-3889. |
[17] | FENG X P, FAN Y C, NOMURA N, et al.Graphene promoted oxygen vacancies in perovskite for enhanced thermoelectric properties.Carbon, 2017, 112: 169-176. |
[18] | RICE R W, WU C C, BORCHELT F.Hardness grain-size relations in ceramics.J. Am. Ceram. Soc., 1994, 77(10): 2539-2553. |
[19] | ZHANG S C, FAHRENHOLTZ W G, HILMAS G E, et al.Pressureless sintering of carbon nanotube-Al2O3 composites.J. Eur. Ceram. Soc., 2010, 30(6): 1373-1380. |
[20] | INAM F, VO T, BHAT B R.Structural stability studies of graphene in sintered ceramic nanocomposites.Ceram. Int., 2014, 40(PB): 16227-16233. |
[21] | FAN Y C, ESTILI M, IGARASHI G, et al.The effect of homogeneously dispersed few-layer graphene on microstructure and mechanical properties of Al2O3 nanocomposites.J. Eur. Ceram. Soc., 2014, 34(2): 443-451. |
[22] | LIU X, LI J L, YU X W, et al.Graphene nanosheet/titanium carbide composites of a fine-grained structure and improved mechanical properties.Ceram. Int., 2016, 42(1): 165-172. |
[23] | FAN Y C, IGARASHI G, JIANG W, et al.Highly strain tolerant and tough ceramic composite by incorporation of graphene.Carbon, 2015, 90: 274-283. |
[24] | LIU J, YAN H X, JIANG K.Mechanical properties of graphene platelet-reinforced alumina ceramic composites.Ceram. Int., 2013, 39(6): 6215-6221. |
[25] | KIM H J, LEE S M, OH Y S, et al.Unoxidized graphene/alumina nanocomposite: fracture- and wear-resistance effects of graphene on alumina matrix.Sci. Rep.-Uk., 2014, 4: 5176. |
[26] | LIU J, YANG Y, HASSANIN H, et al.Graphene-alumina nanocomposites with improved mechanical properties for biomedical applications.ACS Appl. Mater. Inter., 2016, 8(4): 2607-2616. |
[27] | DEL RIO F, BOADO M G, RAMA A, et al.A comparative study on different aqueous-phase graphite exfoliation methods for few-layer graphene production and its application in alumina matrix composites.J. Eur. Ceram. Soc., 2017, 37(12): 3681-3693. |
[28] | CHEN C, PAN L M, LI X Y, et al.Mechanical and thermal properties of graphene nanosheets/magnesia composites.Ceram. Int., 2017, 43(13): 10377-10385. |
[29] | KLEBERT S, BALAZSI C, BALAZSI K, et al.Spark plasma sintering of graphene reinforced hydroxyapatite composites.Ceram. Int., 2015, 41(3): 3647-3652. |
[30] | RUL S, LEFèVRE-SCHLICK F, CAPRIA E, et al. Percolation of single-walled carbon nanotubes in ceramic matrix nanocomposites.Acta Materialia, 2004, 52(4): 1061-1067. |
[31] | CENTENO A, ROCHA V G, ALONSO B, et al.Graphene for tough and electroconductive alumina ceramics.J. Eur. Ceram. Soc., 2013, 33(15/16): 3201-3210. |
[32] | CELIK Y, CELIK A, FLAHAUT E, et al.Anisotropic mechanical and functional properties of graphene-based alumina matrix nanocomposites.J. Eur. Ceram. Soc., 2016, 36(8): 2075-2086. |
[33] | QING Y C, WEN Q L, LUO F, et al.Temperature dependence of the electromagnetic properties of graphene nanosheet reinforced alumina ceramics in the X-band.J. Mater. Chem. C, 2016, 4(22): 4853-4862. |
[34] | SUNG J W, KIM K H, KANG M C.Effects of graphene nanoplatelet contents on material and machining properties of GNP-dispersed Al2O3 ceramics for micro-electric discharge machining.Int. J. Pr. Eng. Man.-Gt., 2016, 3(3): 247-252. |
[35] | LEE E, CHOI K B, LEE S M, et al.A scalable and facile synthesis of alumina/exfoliated graphite composites by attrition milling.RSC Adv., 2015, 5(113): 93267-93273. |
[36] | SHIN J H, HONG S H.Fabrication and properties of reduced graphene oxide reinforced yttria-stabilized zirconia composite ceramics.J. Eur. Ceram. Soc., 2014, 34(5): 1297-1302. |
[37] | CHEN B B, LIU X, ZHAO X Q, et al.Preparation and properties of reduced graphene oxide/fused silica composites.Carbon, 2014, 77: 66-75. |
[38] | KWON S M, LEE S J, SHON I J.Enhanced properties of nanostructured ZrO2-graphene composites rapidly sintered via high- frequency induction heating.Ceram. Int., 2015, 41(1): 835-842. |
[39] | FAN Y C, KANG L J, ZHOU W W, et al.Control of doping by matrix in few-layer graphene/metal oxide composites with highly enhanced electrical conductivity.Carbon, 2015, 81: 83-90. |
[1] | 丁玲, 蒋瑞, 唐子龙, 杨运琼. MXene材料的纳米工程及其作为超级电容器电极材料的研究进展[J]. 无机材料学报, 2023, 38(6): 619-633. |
[2] | 杨卓, 卢勇, 赵庆, 陈军. X射线衍射Rietveld精修及其在锂离子电池正极材料中的应用[J]. 无机材料学报, 2023, 38(6): 589-605. |
[3] | 陈强, 白书欣, 叶益聪. 热管理用高导热碳化硅陶瓷基复合材料研究进展[J]. 无机材料学报, 2023, 38(6): 634-646. |
[4] | 林俊良, 王占杰. 铁电超晶格的研究进展[J]. 无机材料学报, 2023, 38(6): 606-618. |
[5] | 牛嘉雪, 孙思, 柳鹏飞, 张晓东, 穆晓宇. 铜基纳米酶的特性及其生物医学应用[J]. 无机材料学报, 2023, 38(5): 489-502. |
[6] | 苑景坤, 熊书锋, 陈张伟. 聚合物前驱体转化陶瓷增材制造技术研究趋势与挑战[J]. 无机材料学报, 2023, 38(5): 477-488. |
[7] | 杜剑宇, 葛琛. 光电人工突触研究进展[J]. 无机材料学报, 2023, 38(4): 378-386. |
[8] | 杨洋, 崔航源, 祝影, 万昌锦, 万青. 柔性神经形态晶体管研究进展[J]. 无机材料学报, 2023, 38(4): 367-377. |
[9] | 游钧淇, 李策, 杨栋梁, 孙林锋. 氧化物双介质层忆阻器的设计及应用[J]. 无机材料学报, 2023, 38(4): 387-398. |
[10] | 林思琪, 李艾燃, 付晨光, 李荣斌, 金敏. Zintl相Mg3X2(X=Sb, Bi)基晶体生长及热电性能研究进展[J]. 无机材料学报, 2023, 38(3): 270-279. |
[11] | 齐占国, 刘磊, 王守志, 王国栋, 俞娇仙, 王忠新, 段秀兰, 徐现刚, 张雷. GaN单晶的HVPE生长与掺杂进展[J]. 无机材料学报, 2023, 38(3): 243-255. |
[12] | 张超逸, 唐慧丽, 李宪珂, 王庆国, 罗平, 吴锋, 张晨波, 薛艳艳, 徐军, 韩建峰, 逯占文. 新型GaN与ZnO衬底ScAlMgO4晶体的研究进展[J]. 无机材料学报, 2023, 38(3): 228-242. |
[13] | 陈昆峰, 胡乾宇, 刘锋, 薛冬峰. 多尺度晶体材料的原位表征技术与计算模拟研究进展[J]. 无机材料学报, 2023, 38(3): 256-269. |
[14] | 谢兵, 蔡金峡, 王铜铜, 刘智勇, 姜胜林, 张海波. 高储能密度聚合物基多层复合电介质的研究进展[J]. 无机材料学报, 2023, 38(2): 137-147. |
[15] | 冯静静, 章游然, 马名生, 陆毅青, 刘志甫. 冷烧结技术的研究现状及发展趋势[J]. 无机材料学报, 2023, 38(2): 125-136. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||