无机材料学报 ›› 2018, Vol. 33 ›› Issue (2): 129-137.DOI: 10.15541/jim20170401
刘茜1, 周真真1,2
收稿日期:
2017-08-22
修回日期:
2017-10-26
出版日期:
2018-02-26
网络出版日期:
2018-01-26
作者简介:
刘茜(1958),女,博士,研究员.Email:qianliu@sunm.shcnc.ac.cn
LIU Qian1, ZHOU Zhen-Zhen1,2
Received:
2017-08-22
Revised:
2017-10-26
Published:
2018-02-26
Online:
2018-01-26
摘要:
含硅氮氧化物是一类重要的结构/功能一体化材料, 在耐磨耐蚀、高速切削、压力密封、发光基质和碱性催化等领域有重要应用。含硅氮氧化物制备技术经历了高温固相反应法、自蔓延高温合成法、碳热还原氮化法、湿化学合成结合碳热还原氮化法等演变, 呈现持续发展的态势。本文综述了作者研究团队十余年在低温活化合成含硅氮氧化物粉体及纤维的研究进展, 重点介绍基于介孔模板组装的微纳尺度碳热还原氮化法以及SiC还原辅助溶胶-凝胶氮化法制备含硅氮氧化物, 并展望了低温活化合成含硅氮氧化物材料的发展方向和应用前景。
中图分类号:
刘茜, 周真真. 低温活化合成含硅氮氧化物材料研究进展[J]. 无机材料学报, 2018, 33(2): 129-137.
LIU Qian, ZHOU Zhen-Zhen. Progress in Activated-synthesis of Si-based Oxynitrides
Materials at Low Temperatures[J]. Journal of Inorganic Materials, 2018, 33(2): 129-137.
图1 介孔硬模板法结合纳米浇注及碳热还原氮化合成β-Sialon粉体过程示意图[19]
Fig.1 Schematic processing of β-Sialon powder synthesis via a combination route of mesoporous hard template, nano-casting, and carbothermal reduction nitridation[19]
Sample | Surface area, SBET/(m2•g-1) | Pore volume, VBJH/(cm3•g-1) | Average pore size, Dpore/nm |
---|---|---|---|
SBA-15 hard template | 577.0 | 0.88 | 6.1 |
SBA-15/C/Al2O3 composited precursor | 359.0 | 0.23 | 2.6 |
β-Si3Al3O3N5 product 1420℃/6 h (Z=3) | 15.8 | 0.03 | 7.7 |
表1 样品的比表面积, 孔容和平均孔径[19]
Table 1 Surface area, pore volume, and average pore size of samples[19]
Sample | Surface area, SBET/(m2•g-1) | Pore volume, VBJH/(cm3•g-1) | Average pore size, Dpore/nm |
---|---|---|---|
SBA-15 hard template | 577.0 | 0.88 | 6.1 |
SBA-15/C/Al2O3 composited precursor | 359.0 | 0.23 | 2.6 |
β-Si3Al3O3N5 product 1420℃/6 h (Z=3) | 15.8 | 0.03 | 7.7 |
图2 (a) SBA-15、(b)介孔碳/氧化硅/氧化铝复合前驱物和(c)β-Si3Al3O3N5粉体的SEM照片 [19]
Fig. 2 SEM microscopic images of (a) SBA-15, (b) SBA-15/C/Al2O3 composite precursors and (c) resultant β-Si3Al3O3N5 product powders[19]
图4 (a)SBA-15颗粒, (b)利用SBA-15/C添加0.5mol% Y2O3在1280℃反应7 h后的Si2N2O单个颗粒, (c)介孔二氧化硅球(MMS), (d)利用MMS/C 添加0.5mol% Y2O3在1280℃反应 7 h后的Si2N2O颗粒的SEM照片[24]
Fig. 4 SEM images of (a) SBA-15 particle, (b) Si2N2O particle prepared using a SBA-15/C composite with 0.5mol% Y2O3 calcined at 1280℃/7 h, (c) mesoporous silica spheres (MMS), and (d) Si2N2O particle prepared using a MMS/C composite with 0.5mol% Y2O3 calcined at 1280℃/7 h[24]
图5 β-Sialon : xEu2+(z=1.00, 掺杂浓度x=0.010’ 0.200)荧光粉的(a)激发光谱 (λem=416及525 nm)和(b)发射光谱(λex=265及275 nm), 粉体合成温度1400℃[38]
Fig. 5 (a) Excitation spectra and (b) emission spectra of β-Sialon : xEu2+ (x=0.010’0.200, z=1.00) phosphor samples with various x values, synthesized at 1400℃(λex=265, 275 nm, λem=416, 525 nm)[38]
图6 β-Sialon : 0.05Eu2+(z=1.00)荧光粉的高温荧光光谱图(T=25’275℃)[38]
Fig. 6 PL emission spectra of as-synthesized β-Sialon : 0.05Eu2+ (z=1.00) phosphor sample synthesized at 1400℃, measured in an increasing temperature range from 25℃ to 275℃[38]
图7 1460℃合成, 以蔗糖为还原剂再被覆活性碳得到的β-Sialon : Eu2+ 纤维的XRD图谱[46]
Fig. 7 XRD patterns of β-Sialon : Eu2+ fibers calcined at 1460℃, using sucrose and carbon powders as duplicate reducing agents[46]
图8 1460℃碳热还原处理, 蔗糖及活性炭粉作为复合还原剂得到的β-Sialon : Eu2+ 纤维形貌的SEM照片[46]
Fig. 8 Morphology image of β-Sialon : Eu2+ fibers calcined at 1460℃, using sucrose and carbon powders as duplicate reducing agents[46]
图9 1560℃煅烧5 h得到的Y5(1-x)Si3O12N : 5xEu2+(x = 0.005~ 0.06)荧光粉的XRD图谱 [47]
Fig. 9 XRD patterns of Y5(1-x)Si3O12N : 5xEu2+ (x = 0.005~ 0.06) calcined at 1560℃ for 5 h[47]
图10 Y5(1-x)Si3O12N : 5xEu2+(掺杂浓度x=0.003~0.06)荧光粉在365 nm波长激发下的归一化发射光谱(a)和 发射谱对应的色坐标以及荧光粉在365 nm紫外灯辐照下的发光图片(b) [47]
Fig. 10 (a) Normalized emission spectra (λex=365 nm), (b) corresponding CIE coordinates and photographs under a UV (365 nm) light radiation of Y5(1-x)Si3O12N : 5xEu2+(x=0.003~0.06) phosphors[47]
[1] | YOICHI O, OSAMI K.Solid solubility of some oxides in Si3N4.Jpn. J. Appl. Phys., 1971, 10(11): 1637. |
[2] | JACK K H, WILSON W I.Ceramics based on the Si-Al-O-N and related systems.Nat. Phys. Sci., 1972, 238: 28-29. |
[3] | HAMPSHIRE S, PARK H K, THOMPSON D P, et al.α'-Sialon ceramics.Nature, 1978, 274(5674): 880-882. |
[4] | EKSTR M T, NYGREN M.Sialon ceramics.J. Am. Ceram. Soc., 1992, 75(2): 259-276. |
[5] | XUE JUNMIN, LIU QIAN, GUI LINHUA.Lower-temperature hot-pressed Dy-α-sialon ceramics with an LiF additive.J. Am. Ceram. Soc., 2007, 90(5): 1623-1625. |
[6] | KARUNARATNE B S B, LUMBY R J, LEWIS M H. Rare-earth-doped α°-Sialon ceramics with novel optical properties.J. Mater. Res., 1996, 11(11): 2790-2794. |
[7] | SHEN Z J, NYGREN M, HAMPSHIRE U.Absorption spectra of rare-earth-doped α-Sialon ceramics.J. Mater. Sci. Lett., 1997, 16(4): 263-266. |
[8] | XIE R J, MITOMO M, UHEDA K, et al.Preparation and luminescence spectra of calcium- and rare-earth (r = Eu, Tb, and Pr)-codoped α-sialon ceramics.J. Am. Ceram. Soc., 2002, 85(5): 1229-1234. |
[9] | VAN KREVEL J W H, VAN RUTTEN J W T, MANDAL H, et al. Luminescence properties of terbium-, cerium-, or europium-doped α-sialon materials.J. Solid State Chem., 2002, 165(1): 19-24. |
[10] | LI F J, WAKIHARA T, TATAMI J, et al.Synthesis of β-Sialon powder by carbothermal reduction-nitridation of zeolites with different compositions.J. Eur. Ceram. Soc., 2007, 27(6): 2535-2540. |
[11] | ZHOU Y, YOSHIZAWA Y I, HIRAO K, et al.Preparation of Eu-doped β-Sialon phosphors by combustion synthesis.J. Am. Ceram. Soc., 2008, 91(9): 3082-3085. |
[12] | KIMOTO K, XIE R J, MATSUI Y, et al.Direct observation of single dopant atom in light-emitting phosphor of β-Sialon:Eu2+.Appl. Phys. Lett., 2009, 94(4): 041908. |
[13] | HAYASHI F, ISHIZU K I, IWAMOTO M.Effect of pore structure on the nitridation of mesoporous silica with ammonia.Eur. J. Inorg. Chem., 2010, (15): 2235-2243. |
[14] | WANG JIACHENG, LIU QIAN.Synthesis and characterization of ordered mesoporous SiOxNy thin films with different nitrogen contents.Nanotechnology, 2006,17(11): 2828. |
[15] | ZHANG CUNMAN, LIU QIAN, XU ZHENG, et al.Synthesis and characterization of composite molecular sieves with mesoporous and microporous structure from ZSM-5 zeolites by heat treatment.Microp. Mesop. Mater., 2003, 62(3): 157-163. |
[16] | WAN KESHU, LIU QIAN, ZHANG CUNMAN.Synthesis of highly ordered mesoporous silicon oxynitride with high nitrogen content.Chem. Lett., 2003, 32(4): 362-363. |
[17] | LUAN Z, HARTMANN M, ZHAO D, et al.Alumination and ion exchange of mesoporous SBA-15 molecular sieves.Chem. Mater., 1999, 11(6): 1621-1627. |
[18] | VALLET-REGI M, RUIZ- GONZALEZ L, IZQUIERDO-BARBA I, et al.Revisiting silica based ordered mesoporous materials: medical applications.J. Mater. Chem., 2006, 16(1): 26-31. |
[19] | YAN QIANG, LIU QIAN, LIU QINGFENG.Synthesis of rod-like high-purity β-Sialon powder by a novel carbothermal reduction- nitridation method with a nanocasting procedure.J. Am. Ceram. Soc., 2010, 93(9): 2470-2472. |
[20] | WANG MINGHUI, LIU QIAN, WANG JIACHENG, et al.Highly ordered N-containing mesoporous silica from carbothermal reduction- nitridation with the nanocasting procedure.J. Am. Ceram. Soc., 2008, 91(7): 2405-2408. |
[21] | TENG Z, HAN Y, LI J, et al.Preparation of hollow mesoporous silica spheres by a Sol-Gel/emulsion approach.Microporous Mesoporous Mater., 2010, 127(1): 67-72. |
[22] | RYOO R, JOO S H, JUN S.Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation.J. Phys. Chem. B, 1999, 103(37): 7743-7746. |
[23] | JUN S, JOO S H, RYOO R, et al.Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure.J. Am. Chem. Soc., 2000, 122(43): 10712-10713. |
[24] | ZHOU YAO, LIU QIAN, ZHOU HU, et al.Yttrium oxide-assisted CRN synthesis of silicon oxynitride powders with controlled morphology.J. Am. Ceram. Soc., 2013, 96(11): 3650-3655. |
[25] | ZHOU YAO, LIU QIAN, ZHOU HU.Synthesis of pure rod-like α-Si3N4 powder with in situ C/SBA-15 composite.Ceram. Int., 2012, 38(7): 6059-6062. |
[26] | WUSIRIKA R.Reaction of ammonia with fumed silica.J. Am. Ceram. Soc., 1990, 73(10): 2926-2929. |
[27] | LU Q, LI J.Low-temperature synthesis of Y2SiO5:Eu3+ powders using mesoporous silica and their luminescence properties.Opt. Mater., 2011, 33(3): 381-384. |
[28] | MOHANTY P, RAM S.Thermodynamic lattice instability driving bulk amorphization in Eu3+-doped Al2O3 mesoporous composites.Mater. Lett., 2002, 53(4): 287-295. |
[29] | ZEUNER M, PAGANO S, SCHNICK W.Nitridosilicates and oxonitridosilicates: from ceramic materials to structural and functional diversity.Angew. Chem. Int. Ed., 2011, 50(34): 7754-7775. |
[30] | XIE R J, HIROSAKI N, SAKUMA K, et al.Eu2+-doped Ca-α- Sialon: a yellow phosphor for white light- emitting diodes.Appl. Phys. Lett., 2004, 84(26): 5404-5406. |
[31] | HIROSAKI N, XIE R J, KIMOTO K, et al.Characterization and properties of green-emitting β-Sialon:Eu2+ powder phosphors for white light-emitting diodes.Appl. Phys. Lett., 2005, 86(21): 211905. |
[32] | XIE R J, HIROSAKI N, LI H L, et al.Synthesis and photoluminescence properties of β-Sialon : Eu2 + (Si6-zAlzOzN8-z :Eu2+ ) : a promising green oxynitride phosphor for white light-emitting diodes.J. Electrochem. Soc., 2007, 154(10): J314-J319. |
[33] | ZHU X W, MASUBUCHI Y, MOTOHASHI T, et al.The Z value dependence of photoluminescence in Eu2+-doped β-Sialon (Si6-zAlzOzN8-z) with 1≤z≤4.J. Alloys Compd., 2010, 489(1): 157-161. |
[34] | KIMURA N, SAKUMA K, HIRAFUNE S, et al.Extrahigh color rendering white light-emitting diode lamps using oxynitride and nitride phosphors excited by blue light-emitting diode.Appl. Phys. Lett., 2007, 90(5): 051109. |
[35] | SAKUMA K, HIROSAKI N, KIMURA N, et al. White light- emitting diode lamps using oxynitride and nitride phosphor materials. IEICE T. Electron., 2005, E88-C(11): 2057-2064. |
[36] | JUN K, LEE K, KIM G, et al.A new route for the synthesis of β-Sialon: Eu2+ phosphors using pyrophyllite powders.Ceram. Int., 2013, 39: S349-S353. |
[37] | LI L, CHENG Z, TAO F, et al.Synthesis and characterization of Eu2+-doped β-Sialon ultrafine powders.Chinese J. Rare Earth., 2011, 29(3): 383-386. |
[38] | YANG HUA, LIU QIAN, WEI QINHUA, et al.Eu-doped β-Sialon phosphors: template-assistant low temperature synthesis, dual band emission, and high-thermal stability.J. Am. Ceram. Soc., 2014, 97(10): 3164-3169. |
[39] | DU C, YI G, SU Y, et al.Synthesis, characterization, and enhanced luminescence of CaWO4:Eu3+/SBA-15 composites.J. Mater. Sci., 2012, 47(17): 6305-6314. |
[40] | YANG P, HUANG S, KONG D, et al.Luminescence functionalization of SBA-15 by YVO4:Eu3+ as a novel drug delivery system.Inorg. Chem., 2007, 46(8): 3203-3211. |
[41] | YU H, JIANG D M, ZHAI Q Z, et al.Preparation and luminescence of (SBA-15)-Eu2O3 composite materials.J. Lumin., 2012, 132(2): 474-477. |
[42] | BAUMGART P K.Electrostatic spinning of acrylic microfibers.J. Colloid Interf. Sci., 1971, 36(1): 71-79. |
[43] | RAMAKRISHNA S, FUJIHARA K, TEO W E, et al.Electrospun nanofibers: solving global issues.Mater. Today, 2006, 9(3): 40-50. |
[44] | LU QI, LIU QIAN, ZHUANG JIANDONG, et al.Ce3+-doped Lu2Si2O7 luminescent fibers derived from electrospinning: facile preparation and flexible fiber molding.J. Mater. Sci., 2013, 48(23): 8471-8482. |
[45] | LU QI, LIU QIAN, WEI QINHUA, et al.Preparation and characterization of Lu2SiO5:Ce3+ luminescent ceramic fibers via electrospinning.Ceram. Int., 2013, 39(7): 8159-8164. |
[46] | LIU QIAN, LU QI, LIU GUANGHUI, et al.Preparation and property of β-Sialon : Eu2+ luminescent fibers by electrospinning method combined with carbothermal reduction nitridation.J. Lumin., 2016, 169: 749-754. |
[47] | 万洁琼. 新型RE-Si-C-N-O系荧光材料的制备与光谱调控. 上海: 中国科学院上海硅酸盐研究所博士学位论文, 2017. |
[48] | WAN JIEQIONG, LIU QIAN, LIU GUANGHUI, et al.A novel synthesis of green apatite-type Y5(SiO4)3N:Eu2+ phosphor via SiC-assisted Sol-Gel route.J. Am. Ceram. Soc., 2016, 99(3): 748-751. |
[49] | WINN E J, CLEGG W J.Role of the powder bed in the densification of silicon carbide sintered with yttria and alumina additives.J. Am. Ceram. Soc., 1999, 82(12): 3466-3470. |
[50] | LIANG H, YAO X, LIU X, et al.The effect of powder bed on the liquid phase sintering of α-SiC.Mater. Design, 2014, 56: 1009-1013. |
[51] | RILEY F L.Silicon nitride and related materials.J. Am. Ceram. Soc., 2000, 83(2): 245-265. |
我与严东生先生 |
[1] | 丁玲, 蒋瑞, 唐子龙, 杨运琼. MXene材料的纳米工程及其作为超级电容器电极材料的研究进展[J]. 无机材料学报, 2023, 38(6): 619-633. |
[2] | 杨卓, 卢勇, 赵庆, 陈军. X射线衍射Rietveld精修及其在锂离子电池正极材料中的应用[J]. 无机材料学报, 2023, 38(6): 589-605. |
[3] | 陈强, 白书欣, 叶益聪. 热管理用高导热碳化硅陶瓷基复合材料研究进展[J]. 无机材料学报, 2023, 38(6): 634-646. |
[4] | 林俊良, 王占杰. 铁电超晶格的研究进展[J]. 无机材料学报, 2023, 38(6): 606-618. |
[5] | 牛嘉雪, 孙思, 柳鹏飞, 张晓东, 穆晓宇. 铜基纳米酶的特性及其生物医学应用[J]. 无机材料学报, 2023, 38(5): 489-502. |
[6] | 苑景坤, 熊书锋, 陈张伟. 聚合物前驱体转化陶瓷增材制造技术研究趋势与挑战[J]. 无机材料学报, 2023, 38(5): 477-488. |
[7] | 杜剑宇, 葛琛. 光电人工突触研究进展[J]. 无机材料学报, 2023, 38(4): 378-386. |
[8] | 杨洋, 崔航源, 祝影, 万昌锦, 万青. 柔性神经形态晶体管研究进展[J]. 无机材料学报, 2023, 38(4): 367-377. |
[9] | 游钧淇, 李策, 杨栋梁, 孙林锋. 氧化物双介质层忆阻器的设计及应用[J]. 无机材料学报, 2023, 38(4): 387-398. |
[10] | 齐占国, 刘磊, 王守志, 王国栋, 俞娇仙, 王忠新, 段秀兰, 徐现刚, 张雷. GaN单晶的HVPE生长与掺杂进展[J]. 无机材料学报, 2023, 38(3): 243-255. |
[11] | 张超逸, 唐慧丽, 李宪珂, 王庆国, 罗平, 吴锋, 张晨波, 薛艳艳, 徐军, 韩建峰, 逯占文. 新型GaN与ZnO衬底ScAlMgO4晶体的研究进展[J]. 无机材料学报, 2023, 38(3): 228-242. |
[12] | 陈昆峰, 胡乾宇, 刘锋, 薛冬峰. 多尺度晶体材料的原位表征技术与计算模拟研究进展[J]. 无机材料学报, 2023, 38(3): 256-269. |
[13] | 林思琪, 李艾燃, 付晨光, 李荣斌, 金敏. Zintl相Mg3X2(X=Sb, Bi)基晶体生长及热电性能研究进展[J]. 无机材料学报, 2023, 38(3): 270-279. |
[14] | 刘岩, 张珂颖, 李天宇, 周菠, 刘学建, 黄政仁. 陶瓷材料电场辅助连接技术研究现状及发展趋势[J]. 无机材料学报, 2023, 38(2): 113-124. |
[15] | 谢兵, 蔡金峡, 王铜铜, 刘智勇, 姜胜林, 张海波. 高储能密度聚合物基多层复合电介质的研究进展[J]. 无机材料学报, 2023, 38(2): 137-147. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||