无机材料学报 ›› 2018, Vol. 33 ›› Issue (2): 113-128.DOI: 10.15541/jim20170255
所属专题: 环境材料优选论文
陈航榕, 周晓霞, 施剑林
收稿日期:
2017-05-22
修回日期:
2017-08-31
出版日期:
2018-02-26
网络出版日期:
2018-01-26
作者简介:
陈航榕(1970),研究员.Email:hrchen@mail.sic.ac.cn
基金资助:
CHEN Hang-Rong, ZHOU Xiao-Xia, SHI Jian-Lin
Received:
2017-05-22
Revised:
2017-08-31
Published:
2018-02-26
Online:
2018-01-26
Supported by:
摘要:
沸石由于特殊的离子交换性, 丰富的酸性位以及较高的水热稳定性, 被广泛地应用于工业催化和分离吸附等领域。但是由于其较小的微孔尺寸(< 1.5 nm), 在一些大分子参与的催化反应中受到极大的限制。多级孔沸石在保留传统沸石晶化骨架、酸性位以及高水热稳定性的同时引入了多级孔结构, 可极大改善分子的扩散和传质, 减少积碳, 延长催化剂的使用寿命, 使其在催化领域获得更为广泛的应用。本文系统综述了多级孔沸石在孔结构调控方面的研究进展, 着重介绍了无序介孔/大孔结构的多级孔沸石、有序介孔结构的多级孔沸石、取向排列的双介孔结构多级孔沸石、空心结构的多级孔沸石、集大孔-介孔-微孔为一体的多级孔沸石等的合成策略与机理以及结构表征。概述了多级孔沸石在催化领域中的应用进展; 通过与传统沸石和无定型介孔材料的对比, 这种新型的多级孔沸石展现出独特的优势。最后, 对未来多级孔沸石的发展与应用潜力进行了展望。
中图分类号:
陈航榕, 周晓霞, 施剑林. 多级孔沸石的孔结构调控合成及其催化应用研究进展[J]. 无机材料学报, 2018, 33(2): 113-128.
CHEN Hang-Rong, ZHOU Xiao-Xia, SHI Jian-Lin. Research Progress on Hierarchically Porous Zeolites: Structural Control, Synthesis and Catalytic Applications[J]. Journal of Inorganic Materials, 2018, 33(2): 113-128.
图1 骨架Al分布对NaOH处理的MFI沸石脱硅的影响[22]
Fig. 1 Schematic representation of the influence of Al content on the desilication treatment of MFI zeolites in NaOH solution[22]
图2 (a) 碳纳米颗粒作为硬模板合成多级孔沸石ZSM-5示意图, (b)典型的SEM照片和(c)典型的TEM照片以及对应的电子衍射图[2]
Fig. 2 (a) Schematic illustration of hierarchical microporous- mesoporous zeolite crystals ZSM-5 in the presence of an carbon template, typical SEM (b) and TEM (c) images of the templated zeolites, including the electron diffraction pattern[2]
图3 (a)蔗糖原位水热碳化法结合蒸汽辅助晶化法合成多级孔沸石ZSM-5示意图; (b)FE-SEM照片以及SAED; (c)苯甲醚的付克酰基化反应评价[32]
Fig. 3 (a) Schematic synthetic process of hierarchically porous zeolite ZSM-5; (b) FE-SEM image and SAED pattern of the hierarchically porous zeolite ZSM-5; (c) Time dependence of the anisole conversion over different catalysts for Friedel-Crafts acylation of anisole and acetyl chloride[32]
图4 以阳离子聚合物为模板剂合成多级孔沸石Beta的示意图, 多级孔沸石Beta的N2吸附脱附曲线以及相应的孔径分布和TEM照片[36,38]
Fig. 4 Schematic illustration of mesoporous zeolite Beta by using cationic polymers, N2 adsorption/desorption isotherms and the corresponding pore-size distribution curve and TEM image of mesoporous zeolite Beta[36,38]
图5 (a)初级结构单元和CTAB组装形成有序介孔; (b)室温陈化低聚体或纳米颗粒和CTAB组装形成无定形介孔相或介孔和沸石的混合相; (c)不同程度亚晶粒和CTAB组装形成的多级孔ZSM-5沸石; (d)纳米晶粒和CTAB尺度不匹配形成颗粒团聚体[41]
Fig. 5 (a) Formation of ordered mesoporous materials between primary units and CTAB; (b) Amorphous mesophase or a mixture of the mesophse and pure zeolite crystals formed by the assembly between oligomers/nanoparticles and CTAB during room temperature aging; (c) The synthesis of hierarchical mesoporous zeolites (HMZ) by using zeolite subnanocrystal precursor to assemble with CTAB; (d) The formation of nanozeolite aggregates due to size-mismatch between nanocrystals and CTAB[41]
图6 CTAB联合F127共模板制备多级孔ZSM-5沸石的SEM照片(a, b)以及TEM照片(c)和HR-TEM照片(d), (e)是(c)图中整个颗粒的选区电子衍射花样[41]
Fig. 6 SEM (a, b), TEM (c), and HR-TEM (d) images of hierarchical mesoporous ZSM-5 zeolites through co-templating of CTAB and F127, and (e) is the corresponding SAED pattern taken from the whole particle in image (c)[41]
图8 (a)直轨道中模板分子单季铵盐指导SCZN的形成; (b)用不同疏水碳链BCPh-n-6-6合成SCZN的SEM照片; (c)以BCPh-6-6-6为模板合成SCZN-2的高倍TEM照片; (d)焙烧后SCZN-2的孔结构曲线[43]
Fig. 8 (a) Single quaternary ammoniums in the template molecules are located in the straight channel and serve as a template to direct the formation of SCZN; (b) SEM images of as-made samples by using different hydrophobic carbon chain, BCPh-n-6-6; (c) High-resolution transmission electron microscopy (HRTEM) images of as-made SCZN-2 templated by BCPh-6-6-6; (d) Pore properties of calcined SCZN-2[43]
图9 (A)材料ZSM-5-ODM的合成示意图; (B)材料ZSM-5-ODM的N2吸附-脱附曲线以及相应的孔径分布图; (C)材料ZSM-5-ODM的低倍以及高倍FE-SEM照片; (e)中的插图为相应区域的高分辨率FE-SEM照片; (f)材料ZSM-5-ODM的TEM照片以及相应的SADE图片(插图)[44]
Fig. 9 (A) Schematic drawing of the formation mechanism of sample ZSM-5-ODM; (B) N2 adsorption/desorption isotherms and corresponding BJH pore diameter distribution curves of the sample ZSM-5-ODM; (C) Low and high-magnification FE-SEM images of ZSM-5-ODM with an inset in (e) showing high-resolution image on particular sections; (f)Typical HR-TEM image of ZSM-5-ODM and the corresponding selected area electron diffraction (SAED) pattern (inset)[44]
图10 苯甲醛与乙醇的化学反应方程式以及不同催化剂下苯甲醛转化率随反应时间的变化[44]
Fig. 10 Chemical reaction illustration for the condensation of benzaldehyde with ethanol and the effect of reaction time on the conversion of benzaldehyde over the different samples[44]
图11 (a~e)空心介孔沸石球的TEM照片以及相应的电子衍射图(SAED); (f)传统ZSM-5沸石、介孔沸石(MZS)和空心介孔沸石(HMZS)的XRD图谱; (g~h) N2吸附脱附等温线以及相应的孔径分布, 其中MZS和HMZS分别上移了100和200 cm3/g[46]
Fig. 11 (a-e) TEM images of HMZS at different magnifications and its electron diffraction pattern; (f) XRD patterns, (g-h) N2 sorption isotherms and pore size distributions of MZS (●), HMZS (▲) and conventional ZSM-5 zeolite (■). Isotherms of MZS and HMZS are offset by 100 and 200 cm3/g[46]
图12 传统ZSM-5沸石(ZSM-5)、介孔沸石球(MZS)和空心介孔沸石球(HMZS) (a) 对亚甲基蓝吸附等温线以及(b)在PBS中对牛血红蛋白(BHb)的吸附动力学曲线[46]
Fig. 12 Adsorption isotherms of MB and (b) adsorption curves of BHb in PBS by using conventional ZSM-5 zeolite, MZS and HMZS[46]
图13 空腔介孔沸石胶囊的合成示意图[47]
Fig. 13 Schematic drawing of the suggested formation process of the mesoporous zeolite with a hollow capsular structure (MZ-HCS)[47]
图14 空腔沸石胶囊的SEM (a)、TEM (b, c)和照片(c)中黑方框内的高分辨透射电镜照片(d)。(a)中插图显示有意选择的破碎的胶囊颗粒, (e~f)无定形铝硅酸盐(A)和空腔介孔沸石胶囊(B)的27Al和 29Si 固体核磁共振图谱[47]
Fig. 14 SEM (a), TEM (b, c) and HR-TEM (d) images of MZ-HCS. Inset in (a) is a deliberately selected capsule with a broken shell; the HR-TEM image was taken from the area in the black square of (c); (e-f) 27Al and 29Si MAS NMR spectra of (A) AAS and (B) MZ-HCS[47]
图15 传统沸石X和分级孔沸石X的不同倍数的SEM照片[48]
Fig. 15 SEM images with different magnifications of (a-c) calcined conventional zeolite X and (d-f) hierarchical zeolite X[48]
图16 通过准固态晶化过程合成微孔-介孔-大孔硅铝酸盐的示意图(左)和微孔-介孔-大孔硅铝酸盐的TEM照片(右)[51]
Fig. 16 Schematic representation of the synthesis of hierarchically micro-meso-macroprous aluminosilicates (left), and TEM investigation of the formation of micro-meso-macroporous aluminosilicate (right)[51]
Conv /% | Contact time /ms | BET surface area /(m2•g-1) | Si/Al | Product distribution/% | ||||||
---|---|---|---|---|---|---|---|---|---|---|
P1 | P2 | P3 | P4 | P5 | P6 | |||||
MMM(2) | 28.59 | 12 | 562 | 80 | 25.29 | 3.30 | 7.59 | 63.80 | — | — |
44.46 | 18 | — | — | 25.91 | 3.01 | 6.57 | 62.86 | — | 1.64 | |
88.63 | 24 | — | — | 37.14 | 13.37 | 4.73 | 4.44 | 12.42 | 27.87 | |
ZSM-5 | 17.25 | 12 | 302 | 75 | 40.75 | 16.98 | 25.51 | 16.75 | — | — |
23.26 | 18 | — | — | 49.22 | 25.92 | 18.57 | 6.32 | — | — | |
23.97 | 24 | — | — | 24.48 | 26.41 | 16.85 | 5.59 | — | — | |
Al-MCM-41 | — | 24 | 996 | 82 | — | — | — | — | — | — |
MCM-41 | — | 24 | 1075 | ∞ | — | — | — | — | — | — |
表1 不同材料在1,3,5-三异甲苯(TIPB)裂解中的催化反应活性以及BET测试的结构参数[a][51]
Table 1 Catalytic activity for cracking of 1,3,5-triisopropylbenzene and the structural parameters for various samples[a][51]
Conv /% | Contact time /ms | BET surface area /(m2•g-1) | Si/Al | Product distribution/% | ||||||
---|---|---|---|---|---|---|---|---|---|---|
P1 | P2 | P3 | P4 | P5 | P6 | |||||
MMM(2) | 28.59 | 12 | 562 | 80 | 25.29 | 3.30 | 7.59 | 63.80 | — | — |
44.46 | 18 | — | — | 25.91 | 3.01 | 6.57 | 62.86 | — | 1.64 | |
88.63 | 24 | — | — | 37.14 | 13.37 | 4.73 | 4.44 | 12.42 | 27.87 | |
ZSM-5 | 17.25 | 12 | 302 | 75 | 40.75 | 16.98 | 25.51 | 16.75 | — | — |
23.26 | 18 | — | — | 49.22 | 25.92 | 18.57 | 6.32 | — | — | |
23.97 | 24 | — | — | 24.48 | 26.41 | 16.85 | 5.59 | — | — | |
Al-MCM-41 | — | 24 | 996 | 82 | — | — | — | — | — | — |
MCM-41 | — | 24 | 1075 | ∞ | — | — | — | — | — | — |
[1] | MISAELIDES P.Application of natural zeolites in environmental remediation: a short review.Microporous and Mesoporous Materials, 2011, 144(1): 15-18. |
[2] | PREZ-RAMREZ J, CHRISTENSEN C H, EGEBLAD K, et al.Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design.Chemical Society Reviews, 2008, 37(11): 2530-2542. |
[3] | WECKHUYSEN B M, YU J.Recent advances in zeolite chemistry and catalysis.Chemical Society Reviews, 2015, 44(20): 7022-7024. |
[4] | BECK J, VARTULI J, ROTH, W J, et al.A new family of mesoporous molecular sieves prepared with liquid crystal templates.Journal of the American Chemical Society, 1992, 114(27): 10834-10843. |
[5] | YANG Q H, LIU J, ZHONG H, et al.Progress in the periodic mesoporous organosilicas.Journal of Inorganic Materials, 2009, 24(4): 641-649. |
[6] | CHEN J H, WANG F, CHENG N S, et al.Characterization and antibacterial ability of copper-modified hexagonal mesoporous silica in situ.Journal of Inorganic Materials, 2009, 24(4): 695-701. |
[7] | SUN Y, PRINS R.Hydrodesulfurization of 4, 6-dimethyldibenzothiophene over noble metals supported on mesoporous zeolites.Angewandte Chemie International Edition, 2008, 47(44): 8478-8481. |
[8] | VAN DONK S, BROERSMA A, GIJZEMAN O, et al.Combined diffusion, adsorption, and reaction studies of n-hexane hydroisomerization over Pt/H-mordenite in an oscillating microbalance.Journal of Catalysis, 2001, 204(2): 272-280. |
[9] | XIN H, KOEKKOEK A, YANG Q, et al.A hierarchical Fe/ZSM-5 zeolite with superior catalytic performance for benzene hydroxylation to phenol.Chemical Communications, 2009, 48: 7590-7592. |
[10] | ZHOU X, CHEN H, CUI X, et al.A facile one-pot synthesis of hierarchically porous Cu (I)-ZSM-5 for radicals-involved oxidation of cyclohexane.Applied Catalysis A: General, 2013, 451: 112-119. |
[11] | BAI R, SUN Q, WANG N, et al.Simple quaternary ammonium cations-templated syntheses of extra-large pore germanosilicate zeolites.Chemistry of Materials, 2016, 28(18): 6455-6458. |
[12] | CHAL R, GERARDIN C, BULUT M, et al.Overview and industrial assessment of synthesis strategies towards zeolites with mesopores.ChemCatChem, 2011, 3(1): 67-81. |
[13] | CHOI M, CHO H S, SRIVASTAVA R, et al.Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity.Nature Materials, 2006, 5(9): 718-723. |
[14] | GE T, HUA Z, HE X, et al.On the mesoporogen-free synthesis of single-crystalline hierarchically structured ZSM-5 zeolites in a quasi-solid-state system.Chemistry-A European Journal, 2016, 22(23): 7895-7905. |
[15] | HUANG L, WANG Z, SUN J, et al.Fabrication of ordered porous structures by self-assembly of zeolite nanocrystals.Journal of the American Chemical Society, 2000, 122(14): 3530-3531. |
[16] | JACOBSEN C J, MADSEN C, HOUZVICKA J, et al.Mesoporous zeolite single crystals.Journal of the American Chemical Society, 2000, 122(29): 7116-7117. |
[17] | KIM Y, KIM K, RYOO R.Cooperative structure direction of diammonium surfactants and sodium ions to generate MFI zeolite nanocrystals of controlled thickness.Chemistry of Materials, 2017, 29(4): 1752-1757. |
[18] | SERRANO D P, AGUADO J, ESCOLA J M, et al.Hierarchical zeolites with enhanced textural and catalytic properties synthesized from organofunctionalized seeds.Chemistry of Materials, 2006, 18(10): 2462-2464. |
[19] | TAO Y, KANOH H, ABRAMS L, et al.Mesopore-modified zeolites: preparation, characterization, and applications.Chemical Reviews, 2006, 106(3): 896-910. |
[20] | ZHOU Z H, LU J M, WU S F, et al.Synthesis of MCM-48/ZSM-5 composite molecular sieve by two-step crystallization.Journal of Inorganic Materials, 2009, 24(2): 325-329. |
[21] | GROEN J C, ABELL S, VILLAESCUSA L A, et al.Mesoporous beta zeolite obtained by desilication.Microporous and Mesoporous materials, 2008, 114(1): 93-102. |
[22] | GROEN J C, MOULIJN J A, PEREZ-RAMIREZ J, et al.Desilication: on the controlled generation of mesoporosity in MFI zeolites.Journal of Materials Chemistry, 2006, 16: 2121-2131. |
[23] | SONG Y, HUA Z, ZHU Y, et al.Solvent-free liquid phase tert-butylation of phenol over hierarchical ZSM-5 zeolites for the efficient production of 2, 4-ditert-butylphenol.Journal of Materials Chemistry, 2012, 22(8): 3327-3329. |
[24] | ZHOU J, HUA Z, CUI X, et al.Hierarchical mesoporous TS-1 zeolite: a highly active and extraordinarily stable catalyst for the selective oxidation of 2, 3, 6-trimethylphenol.Chemical Communications, 2010, 46(27): 4994-4996. |
[25] | ZHOU J, HUA Z, LIU Z, et al.Direct synthetic strategy of mesoporous ZSM-5 zeolites by using conventional block copolymer templates and the improved catalytic properties.ACS Catalysis, 2011, 1(4): 287-291. |
[26] | ZHOU J, HUA Z, SHI J, et al.Synthesis of a hierarchical micro/mesoporous structure by steam-assisted post-crystallization.Chemistry-A European Journal, 2009, 15(47): 12949-12954. |
[27] | ZHU Y, HUA Z, ZHOU X, et al.CTAB-templated mesoporous TS-1 zeolites as active catalysts in a desulfurization process: the decreased hydrophobicity is more favourable in thiophene oxidation.RSC Advances, 2013, 3(13): 4193-4198. |
[28] | AZHATI A, XIE S, WANG W, et al.Ordered, highly zeolitized mesoporous aluminosilicates produced by a gradient acidic assembly growth strategy in a mixed template system.Chemistry of Materials, 2016, 28(13): 4859-4866. |
[29] | WHITE R J, FISCHER A, GOEBEL C, et al.A sustainable template for mesoporous zeolite synthesis.Journal of the American Chemical Society, 2014, 136(7): 2715-2718. |
[30] | ZHU J, ZHU Y, ZH, L, et al.Highly mesoporous single-crystalline zeolite beta synthesized using a nonsurfactant cationic polymer as a dual-function template.Journal of the American Chemical Society, 2014, 136(6): 2503-2510. |
[31] | ZHU K, EGEBLAD K, CHRISTENSEN C H.Mesoporous carbon prepared from carbohydrate as hard template for hierarchical zeolites.European Journal of Inorganic Chemistry, 2007, 2007(25): 3955-3960. |
[32] | SONG Y, HUA Z, ZHU Y, et al.An in situ carbonaceous mesoporous template for the synthesis of hierarchical ZSM-5 zeolites by one-pot steam-assisted crystallization.Chemistry-An Asian Journal, 2012, 7(12): 2772-2776. |
[33] | BOISEN A, SCHMIDT I, CARLSSON A, et al.TEM stereo- imaging of mesoporous zeolite single crystals.Chemical Communications, 2003, 8: 958-959. |
[34] | CHOI M, NA K, KIM J, et al.Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts.Nature, 2009, 461(7261): 246-249. |
[35] | ZHU H, LIU Z, WANG Y, et al.Nanosized CaCO3 as hard template for creation of intracrystal pores within silicalite-1 crystal.Chemistry of Materials, 2007, 20(3): 1134-1139. |
[36] | XIAO F S, WANG L, YIN C, et al.Catalytic properties of hierarchical mesoporous zeolites templated with a mixture of small organic ammonium salts and mesoscale cationic polymers.Angewandte Chemie, 2006, 118(19): 3162-3165. |
[37] | WANG L, YIN C, SHAN Z, et al.Bread-template synthesis of hierarchical mesoporous ZSM-5 zeolite with hydrothermally stable mesoporosity.Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 340(1): 126-130. |
[38] | MENG X, NAWAZ F, XIAO F S.Templating route for synthesizing mesoporous zeolites with improved catalytic properties.Nano Today, 2009, 4(4): 292-301. |
[39] | GE T, HUA Z, LV J, et al.Hydrophilicity/hydrophobicity modulated synthesis of nano-crystalline and hierarchically structured TS-1 zeolites.CrystEngComm, 2017, 19(10): 1370-1376. |
[40] | ZHOU X, CHEN H, SUN Y, et al.Highly efficient light-induced hydrogen evolution from a stable Pt/CdS NPs-co-loaded hierarchically porous zeolite beta.Applied Catalysis B: Environmental, 2014, 152: 271-279. |
[41] | ZHU Y, HUA Z, ZHOU J, et al.Hierarchical mesoporous zeolites: direct self-assembly synthesis in a conventional surfactant solution by kinetic control over the zeolite seed formation.Chemistry-A European Journal, 2011, 17(51): 14618-14627. |
[42] | XU D, JING Z, CAO F, et al.Surfactants with aromatic-group tail and single quaternary ammonium head for directing single- crystalline mesostructured zeolite nanosheets.Chemistry of Materials, 2014, 26(15): 4612-4619. |
[43] | XU D, MA Y, JING Z, et al.π-π interaction of aromatic groups in amphiphilic molecules directing for single-crystalline mesostructured zeolite nanosheets.Nature communications, 2014, 5: 4262-4270. |
[44] | ZHOU X, CHEN H, ZHU Y, et al.Dual-mesoporous ZSM-5 zeolite with highly b-axis-oriented large mesopore channels for the production of benzoin ethyl ether.Chemistry-A European Journal, 2013, 19(30): 10017-10023. |
[45] | SHAN Z, WANG H, MENG X, et al.Designed synthesis of TS-1 crystals with controllable b-oriented length.Chemical Communications, 2011, 47(3): 1048-1050. |
[46] | 周健. 蒸汽辅助晶化法制备介孔沸石分子筛及其催化性能研究. 上海: 中国科学院上海硅酸盐研究所博士学位论文, 2011. |
[47] | ZHAO J, HUA Z, LIU Z, et al. Direct fabrication of mesoporous zeolite with a hollow capsular structure.Chemical Communications, 2009(48): 7578-7580. |
[48] | INAYAT A, KNOKE I, SPIECKER E, et al.Assemblies of mesoporous FAU-type zeolite nanosheets.Angewandte Chemie International Edition, 2012, 51(8): 1962-1965. |
[49] | DONG A, WANG Y, TANG Y, et al.Zeolitic tissue through wood cell templating.Advanced Materials, 2002, 14(12): 926-929. |
[50] | TAN Q, BAO X, SONG T, et al.Synthesis, characterization, and catalytic properties of hydrothermally stable macro-meso-microporous composite materials synthesized via in situ assembly of preformed zeolite Y nanoclusters on kaolin.Journal of Catalysis, 2007, 251(1): 69-79. |
[51] | YANG X Y, TIAN G, CHEN L H, et al.Well-organized zeolite nanocrystal aggregates with interconnected hierarchically micro- meso-macropore systems showing enhanced catalytic performance.Chemistry-A European Journal, 2011, 17(52): 14987-14995. |
[1] | 丁玲, 蒋瑞, 唐子龙, 杨运琼. MXene材料的纳米工程及其作为超级电容器电极材料的研究进展[J]. 无机材料学报, 2023, 38(6): 619-633. |
[2] | 杨卓, 卢勇, 赵庆, 陈军. X射线衍射Rietveld精修及其在锂离子电池正极材料中的应用[J]. 无机材料学报, 2023, 38(6): 589-605. |
[3] | 陈强, 白书欣, 叶益聪. 热管理用高导热碳化硅陶瓷基复合材料研究进展[J]. 无机材料学报, 2023, 38(6): 634-646. |
[4] | 林俊良, 王占杰. 铁电超晶格的研究进展[J]. 无机材料学报, 2023, 38(6): 606-618. |
[5] | 牛嘉雪, 孙思, 柳鹏飞, 张晓东, 穆晓宇. 铜基纳米酶的特性及其生物医学应用[J]. 无机材料学报, 2023, 38(5): 489-502. |
[6] | 苑景坤, 熊书锋, 陈张伟. 聚合物前驱体转化陶瓷增材制造技术研究趋势与挑战[J]. 无机材料学报, 2023, 38(5): 477-488. |
[7] | 杜剑宇, 葛琛. 光电人工突触研究进展[J]. 无机材料学报, 2023, 38(4): 378-386. |
[8] | 杨洋, 崔航源, 祝影, 万昌锦, 万青. 柔性神经形态晶体管研究进展[J]. 无机材料学报, 2023, 38(4): 367-377. |
[9] | 游钧淇, 李策, 杨栋梁, 孙林锋. 氧化物双介质层忆阻器的设计及应用[J]. 无机材料学报, 2023, 38(4): 387-398. |
[10] | 张超逸, 唐慧丽, 李宪珂, 王庆国, 罗平, 吴锋, 张晨波, 薛艳艳, 徐军, 韩建峰, 逯占文. 新型GaN与ZnO衬底ScAlMgO4晶体的研究进展[J]. 无机材料学报, 2023, 38(3): 228-242. |
[11] | 陈昆峰, 胡乾宇, 刘锋, 薛冬峰. 多尺度晶体材料的原位表征技术与计算模拟研究进展[J]. 无机材料学报, 2023, 38(3): 256-269. |
[12] | 齐占国, 刘磊, 王守志, 王国栋, 俞娇仙, 王忠新, 段秀兰, 徐现刚, 张雷. GaN单晶的HVPE生长与掺杂进展[J]. 无机材料学报, 2023, 38(3): 243-255. |
[13] | 林思琪, 李艾燃, 付晨光, 李荣斌, 金敏. Zintl相Mg3X2(X=Sb, Bi)基晶体生长及热电性能研究进展[J]. 无机材料学报, 2023, 38(3): 270-279. |
[14] | 刘岩, 张珂颖, 李天宇, 周菠, 刘学建, 黄政仁. 陶瓷材料电场辅助连接技术研究现状及发展趋势[J]. 无机材料学报, 2023, 38(2): 113-124. |
[15] | 谢兵, 蔡金峡, 王铜铜, 刘智勇, 姜胜林, 张海波. 高储能密度聚合物基多层复合电介质的研究进展[J]. 无机材料学报, 2023, 38(2): 137-147. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||