[1] |
OUYANG L, ZHAO Y, JIN G, et al.Influence of sulfur content on bone formation and antibacterial ability of sulfonated PEEK.Biomaterials, 2016, 83(4): 115-126.
|
[2] |
LU T, WEN J, QIAN S, et al.Enhanced osteointegration on tantalum- implanted polyetheretherketone surface with bone-like elastic modulus.Biomaterials, 2015, 51: 173-183.
|
[3] |
DAI C, GUO H, LU J, et al.Osteogenic evaluation of calcium/ magnesium-doped mesoporous silica scaffold with incorporation of rhBMP-2 by synchrotron radiation-based μCT.Biomaterials, 2011, 32(33): 8506-8517.
|
[4] |
LIN K L, CHANG J, LU J X, et al.Preparation and properties of tricalcium phosphate/calcium silicate composite bioceramics.Journal of Inorganic Materials, 2006, 21(6): 1429-1434.
|
[5] |
XU A, LIU X, GAO X, et al.Enhancement of osteogenesis on micro/ nano-topographical carbon fiber-reinforced polyetheretherketone- nanohydroxyapatite biocomposite.Materials Science & Engineering C, 2015, 48: 592-598.
|
[6] |
XU S F, HU Y Y, LIN K L, et al.In vivo study of porous calcium silicate bioceramic in extra-osseous sites.Journal of Inorganic Materials, 2008, 23(3): 611-616.
|
[7] |
ZHU M, ZHANG J, ZHAO S, et al.Three-dimensional printing of cerium-incorporated mesoporous calcium-silicate scaffolds for bone repair.Journal of Materials Science, 2016, 51(2): 836-844.
|
[8] |
LI C, GAO L, CHEN F, et al.Fabrication of mesoporous calcium silicate/calcium phosphate cement scaffolds with high mechanical strength by freeform fabrication system with micro-droplet jetting.Journal of Materials Science, 2015, 50(22): 7182-7191.
|
[9] |
WU C, CHEN M, ZHENG T, et al.Effect of surface roughness on the initial response of MC3T3-E1 cells cultured on polished titanium alloy.Bio-Medical Materials and Engineering, 2015, 26: S155-S164.
|
[10] |
DENG Y, LIU X, XU A, et al.Effect of surface roughness on osteogenesis in vitro and osseointegration in vivo of carbon fiber- reinforced polyetheretherketone-nanohydroxyapatite composite.International Journal of Nanomedicine, 2015, 10: 1425-1447.
|
[11] |
LAI Y H, KUO M C, HUANG J C, et al.On the PEEK composites reinforced by surface-modified nano-silica.Materials Science & Engineering A, 2007, 458(1): 158-169.
|
[12] |
ZHU Y, ZHU M, HE X, et al.Substitutions of strontium in mesoporous calcium silicate and their physicochemical and biological properties.Acta Biomaterialia, 2013, 9(5): 6723-6731.
|
[13] |
HU G F, QUAN R F, CHEN Y M, et al.Fabrication, characterization, bioactivity, and biocompatibility of novel mesoporous calcium silicate/polyetheretherketone composites.RSC Advances, 2016, 6(62): 57131-57137.
|
[14] |
HOU J, ZHANG F, CHENG D, et al.Mineralization of a superficially porous microsphere scaffold via plasma modification.RSC Advances, 2017, 7(6): 3521-3527.
|
[15] |
MORAWSKA-CHOCHOL A, DOMALIK-PYZIK P, SZARANIEC B, et al.The effect of magnesium alloy wires and tricalcium phosphate particles on apatite mineralization on polylactide-based composites.Materials Letters, 2016, 180: 1-5.
|
[16] |
WANG Q X, WU Y Y, DONG X P, et al.Magnesium phosphate/ PBS/wheat protein biocomposite for bone repair.Journal of Inorganic Materials, 2015, 30(9): 957-962.
|
[17] |
DELIGIANNI D D, KATSALA N D, KOUTSOUKOS P G, et al.Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength.Biomaterials, 2000, 22(1): 87-96.
|
[18] |
TAKEDA I, SERIZAWA S, KANEKO A.Fabrication of micro- structured scaffold using self-assembled particles and effects of surface geometries on cell adhesion.Mechanical Engineering Journal, 2016, 3(1): 1-8.
|
[19] |
DU H, WEI Z, WANG H, et al.Surface microstructure and cell compatibility of calcium silicate and calcium phosphate composite coatings on Mg-Zn-Mn-Ca alloys for biomedical application.Colloids & Surfaces B Biointerfaces, 2011, 83(1): 96-102.
|
[20] |
ITO T, SASAKI M, TAGUCHI T.Enhanced ALP activity of MG63 cells cultured on hydroxyapatite-poly (ethylene glycol) hydrogel composites prepared using EDTA-OH.Biomedical Materials, 2015, 10(1): 015025.
|