无机材料学报 ›› 2017, Vol. 32 ›› Issue (9): 897-903.DOI: 10.15541/jim20160651
• • 下一篇
翟春阳1, 孙明娟1, 杜玉扣2, 朱明山1
收稿日期:
2016-11-25
修回日期:
2017-01-05
出版日期:
2017-09-30
网络出版日期:
2017-08-29
作者简介:
翟春阳(1979–), 女, 讲师. E-mail: zhaichunyang@nbu.edu.cn
基金资助:
ZHAI Chun-Yang1, SUN Ming-Juan1, DU Yu-Kou2, ZHU Ming-Shan1
Received:
2016-11-25
Revised:
2017-01-05
Published:
2017-09-30
Online:
2017-08-29
About author:
ZHAI Chun-Yang. E-mail: zhaichunyang@nbu.edu.cn
Supported by:
摘要:
直接甲醇燃料电池(DMFCs)由于具有能量效率高, 携带方便和环境友好等特点, 作为新型清洁能源受到越来越多的关注。阳极催化剂的优劣是影响DMFCs性能的关键因素之一。近年来研究显示, 利用具有光催化活性的半导体材料作为贵金属催化剂的载体, 在外界光源的照射下, 能够极大地改善电极的电催化活性和稳定性。本文对该类新型光响应贵金属/半导体电极在光照条件下对增强甲醇的电催化氧化性能方面进行了总结和概述。首先, 阐述了光照增强电极电催化甲醇氧化性能的基本反应机制; 然后, 对该类电极的制备方法以及催化活性等方面的研究进展进行了系统总结; 最后, 对该类电极在未来DMFCs中应用存在的问题和发展前景做了总结和展望。
中图分类号:
翟春阳, 孙明娟, 杜玉扣, 朱明山. 贵金属/半导体光电阳极在直接甲醇燃料电池中的应[J]. 无机材料学报, 2017, 32(9): 897-903.
ZHAI Chun-Yang, SUN Ming-Juan, DU Yu-Kou, ZHU Ming-Shan. Noble Metal/Semiconductor Photoactivated Electrodes for Direct Methanol Fuel Cel[J]. Journal of Inorganic Materials, 2017, 32(9): 897-903.
图1 光照条件下Pt/CdS电极光电催化甲醇的过程示意图[30]
Fig. 1 Schematic illustration for photoelectrocatalytic methanol oxidation via Pt/CdS electrode under light illumination[30]
[1] | ANDÚJAR J M, SEGURA F. Fuel cells: History and updating. A walk along two centurie.Energy Reviews, 2009, 13: 2309-2322. |
[2] | SHARMA S, POLLET B G.Support materials for PEMFC and DMFC electrocatalysts—a revie.J. Power Sources, 2012, 208(15): 96-119. |
[3] | CAO M N, WU D S, CAO R.Recent advances in the stabilization of platinum electrocatalysts for fuel-cell reaction.ChemCatChem, 2014, 6: 26-45. |
[4] | ARICÒ A S, SRINIVASAN S, ANTONUCCI V.DMFCs: from fundamental aspects to technology developmen.Fuel Cells, 2001, 1: 133-161. |
[5] | WANG, Z H, SHI G Y, XIA J F,et al.Research progress on Pt-based anode catalysts in the direct methanol fuel cel. Acta Chim. Sinica, 2013, 71: 1225-1238. |
[6] | YU X W, PICKUP P G.Recent advances in direct formic acid fuel cells (DFAFC.J. Power Sources, 2008, 182: 124-132. |
[7] | LIN L, ZHU Q, XU A W.Anode catalysts and cathode catalysts of direct methanol fuel cell.Prog. Chem., 2015, 27(9): 1147-1157. |
[8] | KAKATI N, MAITI J, LEE S H,et al.Anode catalysts for direct methanol fuel cells in acidic media: Do we have any alternative for Pt or Pt-Ru ?Chem. Rev., 2014, 114: 12397-12429. |
[9] | KOENIGSMANN C, WONG S S.One-dimensional noble metal electrocatalysts: A promising structural paradigm for direct methanol fuel cell.Eng. & Environ. Sci., 2011, 4: 1161-1176. |
[10] | ZHAO X, YIN M, MA L,et al.Recent advances in catalysts for direct methanol fuel cell. Eng. Environ. Sci., 2011, 4: 2736-2753. |
[11] | HUANG H J, WANG X J.Recent progress on carbon-based support materials for electrocatalysts of direct methanol fuel cell.Mater. Chem., 2014, 2: 6266-6291. |
[12] | ANTOLINI E.Composite materials: An emerging class of fuel cell catalyst support.Appl. Catal. B: Environ., 2010, 100: 413-426. |
[13] | SHRESTHA S, LIU Y, MUSTAIN W E.Electrocatalytic activity and stability of Pt clusters on state-of-the-art supports: A revie.Catal. Rev., 2011, 53: 256-336. |
[14] | LIU Y, GOKCEN D, BERTOCCI U,et al.Self-terminating growth of platinum films by electrochemical depositio. Science, 2012, 338(6112): 1327-1330. |
[15] | LV Q, YIN M, ZHAO X,et al.Promotion effect of TiO2 on catalytic activity and stability of Pt catalyst for electrooxidation of methanol. J. Power Sources, 2012, 218(12): 93-99. |
[16] | MURAWSKA M, COX J A, MIECZNIKOWSKI K.PtIr-WO3 nanostructured alloy for electrocatalytic oxidation of ethylene glycol and ethano.J. Solid State Electrochem., 2014, 18(11): 3003-3010. |
[17] | ZHANG H, HU C, HE X,et al.Pt support of multidimensional active sites and radial channels formed by SnO2, flower-like crystals for methanol and ethanol oxidation. J. Power Sources, 2011, 196: 4499-4505. |
[18] | LINSEBIGLER A L, LU G, YATES J T.Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected result.Chem. Rev., 1995, 95(3): 735-758. |
[19] | SCHNEIDER J, MATSUOKA M, TAKEUCHI M,et al. Understanding TiO2 photocatalysis: mechanisms and materials. Chem. Rev., 2014, 114(19): 9919-9986. |
[20] | ZHOU H L, QU Y Q, ZEID T,et al.Towards highly efficient photocatalysts using semiconductor nanoarchitecture. Eng. Environ. Sci., 2012, 5(5): 6732-6743. |
[21] | DREW K, GIRISHKUMAR G, VINODGOPAL K,et al.Boosting fuel cell performance with a semiconductor photocatalyst: TiO2/Pt-Ru hybrid catalyst for methanol oxidation. J. Phys. Chem. B, 2005, 109(24): 11851-11857. |
[22] | HE H.C, XIAO P, ZHOU M,et al.Boosting catalytic activity with a p-n junction: Ni/TiO2, nanotube arrays composite catalyst for methanol oxidation. Int. J. Hydrogen Energy, 2012, 37(6): 4967-4973. |
[23] | CHEN W T, LIN Y K, YANG T T, et al.Au/ZnS core/shell nanocrystals as an efficient anode photocatalyst in direct methanol fuel cells. J. Chem. Comm., 2013, 49(76): 8486-8488. |
[24] | MOJUMDER N, SARKER S, ABBAS S A,et al.Photoassisted enhancement of the electrocatalytic oxidation of formic acid on platinized TiO2 nanotubes. ACS Appl. Mater. Interfaces., 2014, 6(8): 5585-5594. |
[25] | WANG T, TANG J, WU S C,et al.Preparation of ordered mesoporous WO3-TiO2, films and their performance as functional Pt supports for synergistic photo-electrocatalytic methanol oxidation. J. Power Sources, 2014, 248(7): 510-516. |
[26] | SU C Y, HSUEH Y C, KEI C C,et al.Fabrication of high-activity hybrid Pt@ZnO catalyst on carbon cloth by atomic layer deposition for photoassisted electro-oxidation of methano. J. Phys. Chem. C, 2013, 117(22): 11610-11618. |
[27] | ZHAI C Y, ZHU M S, BIN D,et al.Visible-light-assisted electrocatalytic oxidation of methanol using reduced graphene oxide modified Pt nanoflowers-TiO2 nanotube arrays. ACS Appl. Mater. Inter., 2014, 6(20): 17753-17761. |
[28] | LEELAVATHI A, MADRAS G, RAVISHANKAR N.New insights into electronic and geometric effects in the enhanced photoelectrooxidation of ethanol using ZnO nanorod/ultrathin Au nanowire hybrid.J. Am. Chem. Soc., 2014, 136(41): 14445-14455. |
[29] | SONG Y Y, GAO Z D, SCHMUKI P.Highly uniform Pt nanoparticle decoration on TiO2, nanotube arrays: a refreshable platform for methanol electrooxidatio.Electrochem. Commun., 2011, 13(3): 290-293. |
[30] | ZHAI C Y, ZHU M S, PANG F Z, et al.High efficiency photoelectrocatalytic methanol oxidation on CdS quantum dots sensitized Pt electrode. ACS Appl. Mater. Inter., 2016, 8: 5972-5980. |
[31] | HOSSEINI M G, MOMENI M M.UV-cleaning properties of Pt nanoparticle-decorated titania nanotubes in the electro-oxidation of methanol: an anti-poisoning and refreshable electrod.Electrochim. Acta, 2012, 70(6): 1-9. |
[32] | WU S C, HE J P, ZHOU J H,et al.Fabrication of unique stripe-shaped mesoporous TiO2 films and their performance as a novel photo-assisted catalyst support for DMFC. J. Mater. Chem., 2011, 21(9): 2852-2854. |
[33] | FAN X L, ZHANG C X, XUE H R,et al.Fabrication of SiO2 incorporated ordered mesoporous TiO2 composite films as functional Pt supports for photo-electrocatalytic methanol oxidation. RSC Adv., 2015, 5(96): 78880-78888. |
[34] | HE H C, XIAO P, ZHOU M,et al.Preparation of well-distributed Pt-Ni nanoparticles on/into TiO2 NTs by pulse electrodeposition for methanol photoelectro-oxidation. Catal. Commun., 2011, 16(1): 140-143. |
[35] | He H C, XIAO P, ZHOU M,et al.PtNi alloy nanoparticles supported on carbon-doped TiO2, nanotube arrays for photo-assisted methanol oxidation. Electrochim. Acta, 2013, 88(2): 782-789. |
[36] | LIU J, LIU B, NI Z Y,et al.Improved catalytic performance of Pt/TiO2, nanotubes electrode for ammonia oxidation under UV-light illumination. Electrochim. Acta, 2014, 150: 146-150. |
[37] | WANG C Q, YUE R R, WANG H W,et al.Dendritic Ag@Pt core-shell catalyst modified with reduced graphene oxide and titanium dioxide: Fabrication, characterization, and its photo-electrocatalytic performanc. Int. J. Hydrogen Energy, 2014, 39(11): 5764-5771. |
[38] | ROKESH K, PANDIKUMAR A, MOHAN S C,et al.Aminosilicate Sol-Gel supported zinc oxide-silver nanocomposite material for photoelectrocatalytic oxidation of methano. J. Alloys Compd., 2016, 680: 633-641. |
[39] | CHU D B, WANG S X, ZHENG P,et al.Anode catalysts for direct ethanol fuel cells utilizing directly solar light illuminatio. ChemSusChem, 2009, 2(2): 171-176. |
[40] | WANG C Q, JIANG F X, YUE R R,et al.Enhanced photo-electrocatalytic performance of Pt/RGO/TiO2 on carbon fiber towards methanol oxidation in alkaline media. J. Solid State Electrochem., 2014, 18(2): 515-522. |
[41] | SANKAR M, DIMITRATOS N, MIEDZIAK P J,et al.Designing bimetallic catalysts for a green and sustainable futur. Chem. Soc. Rev., 2013, 41(12): 8099-8139. |
[42] | PANDIKUMAR A, MURUGESAN S, RAMARAJ R.Functionalized silicate Sol-Gel-supported TiO2-Au core-shell nanomaterials and their photoelectrocatalytic activit.ACS Appl. Mater. Inter., 2010, 2(7): 1912-1917. |
[43] | ZHANG H M, ZHOU W Q, DU Y K,et al.Enhanced electrocatalytic performance for methanol oxidation on Pt-TiO2 /ITO electrode under UV illumination. Int. J. Hydrogen Energy, 2010, 35(24): 13290-13297. |
[44] | HOSSEINI M G, MOMENI M M. Platinum nanoparticle-decorated TiO2, nanotube arrays as new highly active and non-poisoning catalyst for photo-electrochemical oxidation of galactose. Appl. Catal. A: Gen.#/magtechI#, 2012, 427 . 428 (10): 35-42. |
[45] | HOSSEINI M G, MOMENI M M.Evaluation of the performance of platinum nanoparticle-titanium oxide nanotubes as a new refreshable electrode for formic acid electro-oxidatio.Fuel Cells, 2012, 12(3): 406-414. |
[46] | HOSSEINI M G, MOMENI M M.Fabrication and photo- electrocatalytic activity of highly oriented titania nanotube loaded with platinum nanoparticles for electro-oxidation of lactose: a new recyclable electro-catalys.J. Mol. Catal. A: Chem., 2012, 355: 216-222. |
[47] | PANDIYARAJAN C, PANDIKUMAR A, RAMARAJ R.Photoelectrocatalytic performance of a titania-keggin type polyoxometalate-gold nanocomposite modified electrode in methanol oxidatio.Nanotechnology, 2013, 24(43): 435401-435408. |
[48] | WANG C Q, JIANG F X, RONG Z,et al.Enhancement of methanol electrocatalytic oxidation on platinized WO3-TiO2 composite electrode under visible light irradiation. Mater. Res. Bull., 2013, 48(3): 1099-1104. |
[49] | LIN C T, HUANG H J, YANG J J,et al.A simple fabrication process of Pt-TiO2 hybrid electrode for photo-assisted methanol fuel cells. Microelectron. Eng., 2011, 88(8): 2644-2646. |
[50] | LI W, BAI Y, LI F J, et al.Core-shell TiO2/C nanofibers as supports for electrocatalytic and synergistic photoelectrocatalytic oxidation of methanol.J. Mater. Chem., 2012, 22: 4025-4031. |
[51] | HSU Y H, NGUYEN A T, CHIU Y H,et al.Au-decorated GaOOH nanorods enhanced the performance of direct methanol fuel cells under light illuminatio. Appli. Catal. B: Environ., 2015, 185: 133-140. |
[52] | XIE J, ZHANG Q H, GU L,et al.Ruthenium-platinum core-shell nanocatalysts with substantially enhanced activity and durability towards methanol oxidatio. Nano Energy, 2016, 21: 247-257. |
[53] | SAIDA T, OGIWARA N, TAKASU Y,et al.Titanium oxide nanosheet modified PtRu/C electrocatalyst for direct methanol fuel cell anode. J. Phys. Chem., 2010, 114(31): 13390-13396. |
[54] | ARULMANI D V, EASTCOTT J I, MAVILLA S G,et al.Photo- enhanced activity of Pt and Pt-Ru catalysts towards the electro- oxidation of methano. J. Power Sources, 2014, 247(2): 890-895. |
[55] | POLO A S, SANTOS M C, SOUZA R F B,et al.Pt-Ru-TiO2 photoelectrocatalysts for methanol oxidation. J. Power Sources, 2011, 196: 872-876. |
[56] | JIA C C, YIN H M, MA H,et al.Enhanced photoelectrocatalytic activity of methanol oxidation on TiO2-decorated nanoporous gold. J. Phys. Chem. C, 2009, 113(36): 16138-16143. |
[57] | KANG S, SHEN P K.Facial synthesis of porous hematite supported Pt catalyst and its photo enhanced electrocatalytic ethanol oxidation performanc.Electrochim. Acta, 2015, 168(10): 104-110. |
[58] | SHI W D, SONG S Y, ZHANG H J.Hydrothermal synthetic strategies of inorganic semiconducting nanostructure.Chem. Soc. Rev., 2013, 42(13): 5714-5743. |
[59] | LI Z S, YE L T, LEI F L,et al.Enhanced electro-photo synergistic catalysis of Pt(Pd)/ZnO/graphene composite for methanol oxidation under visible light irradiatio. Electrochim. Acta, 2015, 188: 450-460. |
[60] | LEI F L, LI Z S, YE L T,et al.One-pot synthesis of Pt/SnO2 /GNs and its electro-photo-synergistic catalysis for methanol oxidation. Int. J. Hydrogen Energy, 2016, 41(1): 255-264. |
[61] | YE L T, LI Z S, ZHANG L,et al.A green one-pot synthesis of Pt/TiO2/graphene composites and its electro-photo-synergistic catalytic properties for methanol oxidation. J. Colloid Inter. Sci., 2014, 433(11): 156-162. |
[62] | YE L T, LI Z S, ZHANG L,et al.One-step microwave synthesis of Pt (Pd)/Cu2O/GNs composites and their electro-photo-synergistic catalytic properties for methanol oxidation. J. Mater. Chem. A, 2014, 2(48): 21010-21019. |
[63] | LIN C T, SHIAO M H, CHANG M N,et al.A facile approach to prepare silicon-based Pt-Ag tubular dendritic nano-forests (tDNFs) for solar-light-enhanced methanol oxidation reactio. Res. Lett., 2015, 10(1): 1-8. |
[64] | PARK K W, HAN S B, LEE J M.Photo(UV)-enhanced performance of Pt-TiO2, nanostructure electrode for methanol oxidatio.Electrochem. Commun., 2007, 9(7): 1578-1581. |
[65] | XU M Li, DUAN BEN, ZHANG Y J, et al.Effect of modification factors of MWCNTs support on electrocatalytic performance of Pt nanoparticles. J. Inorg. Mater., 2015, 30(9): 931-936. |
[66] | SONG H Q, QIU X P, LI X X,et al.TiO2, nanotubes promoting Pt/C catalysts for ethanol electro-oxidation in acidic media. J. Power Sources, 2007, 170(1): 50-54. |
[67] | XING L, JIA J B, WANG Y Z,et al.Pt modified TiO2 nanotubes electrode: Preparation and electrocatalytic application for methanol oxidation. Int. J. Hydrogen Energy, 2010, 35(22): 12169-12173. |
[68] | ZHU M S, CHEN P L, LIU M H.Ag/AgBr/Graphene oxide nanocomposite synthesized via oil/water and water/oil microemulsions: A comparison of sunlight energized plasmonic photocatalytic activit.Langmuir, 2012, 28(7): 3385-3390. |
[69] | ZHANG X M, CHEN Y L, LIU R S,et al.Plasmonic photocatalysis. Rep. Prog. Phys., 2013, 76(4): 2020-2027. |
[70] | ZHU M S, CHEN P L, LIU M H.Ag/AgX(X = CI, Br, I): A new type plasmonic photocatalyst.Prog. Chem., 2013, 25(2): 209-220. |
[71] | ZHU M S, CHEN P L, LIU M H.Graphene oxide enwrapped Ag/AgX (X = Br, Cl) nanocomposite as a highly efficient visible-light plasmonic photocatalys.ACS Nano, 2011, 5(6): 4529-4536. |
[72] | LIN C T, CHANG M N, HUANG H J,et al.Rapid fabrication of three-dimensional gold dendritic nanoforests for visible light-enhanced methanol oxidatio. Electrochim. Acta, 2016, 192: 15-21. |
[1] | 丁玲, 蒋瑞, 唐子龙, 杨运琼. MXene材料的纳米工程及其作为超级电容器电极材料的研究进展[J]. 无机材料学报, 2023, 38(6): 619-633. |
[2] | 杨卓, 卢勇, 赵庆, 陈军. X射线衍射Rietveld精修及其在锂离子电池正极材料中的应用[J]. 无机材料学报, 2023, 38(6): 589-605. |
[3] | 陈强, 白书欣, 叶益聪. 热管理用高导热碳化硅陶瓷基复合材料研究进展[J]. 无机材料学报, 2023, 38(6): 634-646. |
[4] | 林俊良, 王占杰. 铁电超晶格的研究进展[J]. 无机材料学报, 2023, 38(6): 606-618. |
[5] | 牛嘉雪, 孙思, 柳鹏飞, 张晓东, 穆晓宇. 铜基纳米酶的特性及其生物医学应用[J]. 无机材料学报, 2023, 38(5): 489-502. |
[6] | 苑景坤, 熊书锋, 陈张伟. 聚合物前驱体转化陶瓷增材制造技术研究趋势与挑战[J]. 无机材料学报, 2023, 38(5): 477-488. |
[7] | 杜剑宇, 葛琛. 光电人工突触研究进展[J]. 无机材料学报, 2023, 38(4): 378-386. |
[8] | 杨洋, 崔航源, 祝影, 万昌锦, 万青. 柔性神经形态晶体管研究进展[J]. 无机材料学报, 2023, 38(4): 367-377. |
[9] | 游钧淇, 李策, 杨栋梁, 孙林锋. 氧化物双介质层忆阻器的设计及应用[J]. 无机材料学报, 2023, 38(4): 387-398. |
[10] | 陈昆峰, 胡乾宇, 刘锋, 薛冬峰. 多尺度晶体材料的原位表征技术与计算模拟研究进展[J]. 无机材料学报, 2023, 38(3): 256-269. |
[11] | 张超逸, 唐慧丽, 李宪珂, 王庆国, 罗平, 吴锋, 张晨波, 薛艳艳, 徐军, 韩建峰, 逯占文. 新型GaN与ZnO衬底ScAlMgO4晶体的研究进展[J]. 无机材料学报, 2023, 38(3): 228-242. |
[12] | 齐占国, 刘磊, 王守志, 王国栋, 俞娇仙, 王忠新, 段秀兰, 徐现刚, 张雷. GaN单晶的HVPE生长与掺杂进展[J]. 无机材料学报, 2023, 38(3): 243-255. |
[13] | 林思琪, 李艾燃, 付晨光, 李荣斌, 金敏. Zintl相Mg3X2(X=Sb, Bi)基晶体生长及热电性能研究进展[J]. 无机材料学报, 2023, 38(3): 270-279. |
[14] | 刘岩, 张珂颖, 李天宇, 周菠, 刘学建, 黄政仁. 陶瓷材料电场辅助连接技术研究现状及发展趋势[J]. 无机材料学报, 2023, 38(2): 113-124. |
[15] | 谢兵, 蔡金峡, 王铜铜, 刘智勇, 姜胜林, 张海波. 高储能密度聚合物基多层复合电介质的研究进展[J]. 无机材料学报, 2023, 38(2): 137-147. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||