无机材料学报 ›› 2017, Vol. 32 ›› Issue (6): 561-570.DOI: 10.15541/jim20160479 CSTR: 32189.14.10.15541/jim20160479
所属专题: MAX相和MXene材料
• • 下一篇
张建峰, 曹惠杨, 王红兵
收稿日期:
2016-08-29
修回日期:
2016-10-08
出版日期:
2017-06-20
网络出版日期:
2017-05-27
基金资助:
ZHANG Jian-Feng, CAO Hui-Yang, WANG Hong-Bing
Received:
2016-08-29
Revised:
2016-10-08
Published:
2017-06-20
Online:
2017-05-27
Supported by:
摘要:
MXene是一种新型的二维过渡金属碳化物或碳氮化物, 具有类似石墨烯的二维结构, 其化学通式是Mn+1XnTz, n = 1, 2, 3, 其中M为早期过渡金属元素, X为碳或氮元素, T为表面链接的F-、OH-、O2-等活性官能团。通过化学液相法可以选择性蚀刻掉MAX相中的A元素得到相应的MXene相。现今较为成熟的制备方法是HF蚀刻法。对MXene的结构与性能进行的第一性原理计算表明, 其具有独特的二维层状结构、较大的比表面积及良好的导电性、稳定性、磁性能和力学性能, 已广泛应用于储能、催化、吸附等多处领域。本文综述了类石墨烯二维材料MXene的理论、制备和应用方面的研究进展, 并对现有挑战和未来发展提出了建议。随着研究的进一步深入, MXene将被应用于更广泛的领域。
中图分类号:
张建峰, 曹惠杨, 王红兵. 新型二维材料MXene的研究进展[J]. 无机材料学报, 2017, 32(6): 561-570.
ZHANG Jian-Feng, CAO Hui-Yang, WANG Hong-Bing. Research Progress of Novel Two-dimensional Material MXene[J]. Journal of Inorganic Materials, 2017, 32(6): 561-570.
图1 MAX相元素在元素周期表上的位置, 插图为MAX相的原子簇示意图[11]
Fig. 1 Fragment of the periodic table, showing elements forming MAX phases with general composition Mn+1AXn. Inset is an example of packing motif for the MAX phases[11]
图3 MXene的引文报告数据分析图
Fig. 3 Citation reports analysis of Mxene(a) The number of MXene papers published recently; (b) The number of citations about MXene published recently; (c) The contribution rate of ten main organizations in the 306 papers about MXene; (d) The contribution rate of ten main authors in the 306 papers about MXene
System | *Ecoh / eV | *ΔEcoh / eV |
---|---|---|
*TiC | 7.49(7.16a; 9.14b; 9.28c; 7.20d; 7.30e; 7.31f; 7.45i) | - |
*Ti2AlC | 6.29(7.79c) | 1.20(1.49c) |
Ti2Al0.5C | 6.28 | 1.21 |
Ti2C | 6.28 | 1.21 |
Ti3AlC2 | 6.71(8.32c; 6.93g; 7.70h; 8.499j) | 0.78(0.96c) |
Ti3Al0.5C2 | 6.76 | 0.73 |
Ti3C2 | 6.82 | 0.67 |
表1 Tin+1AlCn、NB-Tin+1Al0.5Cn、NB-Tin+1Cn、B1-TiC的结合能Ecoh及结合能差ΔEcoh[37]
Table1 Cohesive energies ( Ecoh, ) and differences in Ecoh ( ΔE ) for MAX Tin+1AlCn phases, Tin+1Al0.5Cn and Tin+1Cn free-standing NBs uersus B1-TiC[37]
System | *Ecoh / eV | *ΔEcoh / eV |
---|---|---|
*TiC | 7.49(7.16a; 9.14b; 9.28c; 7.20d; 7.30e; 7.31f; 7.45i) | - |
*Ti2AlC | 6.29(7.79c) | 1.20(1.49c) |
Ti2Al0.5C | 6.28 | 1.21 |
Ti2C | 6.28 | 1.21 |
Ti3AlC2 | 6.71(8.32c; 6.93g; 7.70h; 8.499j) | 0.78(0.96c) |
Ti3Al0.5C2 | 6.76 | 0.73 |
Ti3C2 | 6.82 | 0.67 |
图4 官能团化MXenes、石墨烯、烷、BN、MoS2的最低近自由电子态和费米能级(Ef)的相对能量与功函数的关系图[47]
Fig. 4 The relative energy position of the lowest NFE state for functionalized MXenes, as well as for graphene, graphane, BN, and MoS2 layers with respect to the Fermi level (Ef) as a function of the work function[47]
MXene content/wt% | Thickness/μm | Conductivity/(S·m-1) | Tensile strength/MPa | Young’s modulus/GPa | Strain to failure/% |
---|---|---|---|---|---|
100 | 3.3 | 240238±3500 | 22±2 | 3.52±0.01 | 1.0±0.2 |
90 | 3.9 | 22433±1400 | 30±3 | 3.00±0.01 | 1.8±0.3 |
80 | 6.1 | 137±3 | 25±4 | 1.7±0.2 | 2.0±0.4 |
60 | 7.2 | 1.30±0.08 | 43±8 | 1.8±0.6 | 3.0±0.5 |
40 | 12.0 | 0.040±0.003 | 91±10 | 3.70±0.02 | 4.0±0.5 |
0 | 13.0 | - | 30±5 | 1.0±0.3 | 15.0±6.5 |
表2 Ti3C2Tx、Ti3C2Tx/PVA和PVA薄膜物理性质[53]
Table2 Physical properties of Ti3C2Tx, Ti3C2Tx/PVA and PVA films[53]
MXene content/wt% | Thickness/μm | Conductivity/(S·m-1) | Tensile strength/MPa | Young’s modulus/GPa | Strain to failure/% |
---|---|---|---|---|---|
100 | 3.3 | 240238±3500 | 22±2 | 3.52±0.01 | 1.0±0.2 |
90 | 3.9 | 22433±1400 | 30±3 | 3.00±0.01 | 1.8±0.3 |
80 | 6.1 | 137±3 | 25±4 | 1.7±0.2 | 2.0±0.4 |
60 | 7.2 | 1.30±0.08 | 43±8 | 1.8±0.6 | 3.0±0.5 |
40 | 12.0 | 0.040±0.003 | 91±10 | 3.70±0.02 | 4.0±0.5 |
0 | 13.0 | - | 30±5 | 1.0±0.3 | 15.0±6.5 |
图5 HF剥离Ti3AlC2的过程示意图
Fig. 5 Schematic of the exfoliation process for Ti3AlC2(a) Ti3AlC2 structure; (b) Selective etching of the A element from the MAX phases after reaction with HF; (c) surface-terminating functional groups
MAX structure | MAX | MXene | Etching conduction | Particle size /μm | c-lattice parameter/nm | Ref. | |||
---|---|---|---|---|---|---|---|---|---|
HF/% | Time/h | Temp. /℃ | MAX | MXene | |||||
211 | Ti2AlC | Ti2CTx | 10 | 10 | 25 | <35 | 1.360 | 1.504 | [10] |
Nb2AlC | Nb2CTx | 50 | 90 | 25 | <38 | 1.388 | 2.234 | [58] | |
V2AlC | V2CTx | 40 | 168 | 25 | <74 | 1.315 | 2.370 | [59] | |
TiNbAlC | TiNbCTx | 50 | 28 | 25 | <35 | 1.379 | 1.488 | [10] | |
312 | Ti3AlC2 | Ti3C2Tx | 50 | 2 | 25 | <35 | 1.842 | 2.051 | [10-11] |
Ti3AlC2 | Ti3C2Tx | 40 | 20 | 25 | - | 1.862 | 2.089 | [60] | |
Ti3AlC2 | Ti3C2Tx | 49 | 24 | 60 | - | 1.830 | 1.990 | [61] | |
Ti3AlCN | Ti3CNTx | 30 | 18 | 25 | <35 | 1.841 | 2.228 | [10] | |
(V0.5Cr0.5)2AlC2 | (V0.5Cr0.5)2C2Tx | 50 | 69 | 25 | <35 | 1.773 | 2.426 | [10] | |
413 | Ta4AlC3 | Ta4C3Tx | 50 | 72 | 25 | <35 | 2.408 | 3.034 | [10] |
Nb4AlC3 | Nb4C3Tx | 48-51 | 96 | 25 | <38 | 2.242 | 3.059 | [21] |
表3 不同工艺条件下HF剥离MAX制备MXene的晶格参数c值
Table3 Process conditions and c-lattice parameters for MXene synthesis from MAX phases
MAX structure | MAX | MXene | Etching conduction | Particle size /μm | c-lattice parameter/nm | Ref. | |||
---|---|---|---|---|---|---|---|---|---|
HF/% | Time/h | Temp. /℃ | MAX | MXene | |||||
211 | Ti2AlC | Ti2CTx | 10 | 10 | 25 | <35 | 1.360 | 1.504 | [10] |
Nb2AlC | Nb2CTx | 50 | 90 | 25 | <38 | 1.388 | 2.234 | [58] | |
V2AlC | V2CTx | 40 | 168 | 25 | <74 | 1.315 | 2.370 | [59] | |
TiNbAlC | TiNbCTx | 50 | 28 | 25 | <35 | 1.379 | 1.488 | [10] | |
312 | Ti3AlC2 | Ti3C2Tx | 50 | 2 | 25 | <35 | 1.842 | 2.051 | [10-11] |
Ti3AlC2 | Ti3C2Tx | 40 | 20 | 25 | - | 1.862 | 2.089 | [60] | |
Ti3AlC2 | Ti3C2Tx | 49 | 24 | 60 | - | 1.830 | 1.990 | [61] | |
Ti3AlCN | Ti3CNTx | 30 | 18 | 25 | <35 | 1.841 | 2.228 | [10] | |
(V0.5Cr0.5)2AlC2 | (V0.5Cr0.5)2C2Tx | 50 | 69 | 25 | <35 | 1.773 | 2.426 | [10] | |
413 | Ta4AlC3 | Ta4C3Tx | 50 | 72 | 25 | <35 | 2.408 | 3.034 | [10] |
Nb4AlC3 | Nb4C3Tx | 48-51 | 96 | 25 | <38 | 2.242 | 3.059 | [21] |
图6 通过芳基重氮盐表面改性分离多层MXene的示意图[31]
Fig. 6 Schematic illustration for delamination process of surface modified MXene multilayers by aryl diazonium salts[31]
[1] | NOVOSELOV K S, GEIM A K, MOROZOV S V, et al.Electric field effect in atomically thin carbon films.Science, 2004, 306(5696): 666-669. |
[2] | KUANG DA, HU WEN-BIN.Research progress of grapheme composites.Journal of Inorganic Materials, 2013, 28(3): 235-246. |
[3] | ZHU Y, MURALI S, CAI W, et al.Graphene and graphene oxide: synthesis, properties, and applications.Adv. Mater., 2010, 22(46): 5226. |
[4] | HUANG X, YIN Z, WU S, et al.Graphene-based materials: synthesis, characterization, properties, and applications.Small, 2011, 7(14): 1876-1902. |
[5] | HUANG H, YANG S, ROBERT V, et al.Pt-Decorated 3D architectures built from graphene and graphitic carbon nitride nanosheets as efficient methanol oxidation catalysts.Adv. Mater., 2014, 26(30): 5160-5165. |
[6] | HUANG H, CHEN Q, HE M, et al.A ternary Pt/MnO2/graphene nanohybrid with an ultrahigh electrocatalytic activity toward methanol oxidation.J. Power Sources, 2013, 239(10): 189-195. |
[7] | HUANG H, CHEN H, SUN D, et al.Graphene nanoplate-Pt composite as a high performance electrocatalyst for direct methanol fuel cells.J. Power Sources, 2012, 204(1): 46-52. |
[8] | JIANG Q G, ZHANG J F, AO Z M, et al.Density functional theory study on the electronic properties and stability of silicene/silicane nanoribbons.J. Mater. Chem., 2015, 3(16): 3954-3959. |
[9] | MICHAEL N, MURAT K, VOLKER P, et al.Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2.Adv. Mater., 2011, 21(1): 17-35. |
[10] | NAGUIB M, MASHTALIR O, CARLE J, et al.Two-dimensional transition metal carbides.ACS Nano, 2012, 6(2): 1322-1331. |
[11] | IVANOVSKII A L, ENYASHIN A N.Graphene-like transition- metal nanocarbides and nanonitrides.Russ. Chem. Rev., 2013, 82(8): 735-746. |
[12] | NOWOTNY V H.Strukturchemie einiger Verbindungen der Übergangsmetalle mit den elementen C, Si, Ge, Sn.Prog. Solid State Chem., 1971, 5(71): 27-70. |
[13] | BARSOUM M W.The Mn+1AXn phases: a new class of solids: Thermodynamically stable nanolaminates.Prog. Solid State Chem., 2000, 28(1-4): 201-281. |
[14] | ZHOU AI-GUO, LI ZHENG-YANG, LI LIANG, et al.Preparation and microstructure of Ti3SiC2 bonded cubic boron nitride superhard composites.Journal of the Chinese Ceramic Society, 2014, 42(2): 220-224. |
[15] | LV TIAN-BAO.Transformation of WPA process from dehydrated into dehydrated-hemihydrates method.Phosphate Compound Fertilizer, 2010, 25(2): 31-32. |
[16] | BARSOUM M W, EL-RAGHY T.The MAX phases: unique new carbide and nitride materials: ternary ceramics turn out to be surprisingly soft and machinable, yet also heat-tolerant, strong and lightweight.Americanentist, 2001, 89(4): 334-343. |
[17] | EKLUND P, BECKERS M, JANSSON U, et al.The Mn+1AXn phases: materials science and thin-film processing.Thin Solid Films, 2010, 518(8): 1851-1878. |
[18] | ZHANG X, XUE M, YANG X, et al.Preparation and tribological properties of Ti3C2(OH)2 nanosheets as additives in base oil.RSC Adv., 2014, 5(4): 56-63. |
[19] | QING T, ZHEN Z, PANWEN S.Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer.J. Am. Chem. Soc., 2012, 134(40): 16909-16916. |
[20] | SHEIN I R, IVANOVSKII A L.Graphene-like nanocarbides and nanonitrides of d metals (MXenes): synthesis, properties and simulation.Micro Nano Lett., 2013, 8(2): 59-62. |
[21] | GHIDIU M, NAGUIB M, SHI C, et al.Synthesis and characterization of two-dimensional Nb4C3 (MXene).Chem. Commun., 2014, 50(67): 9517-9520. |
[22] | MASHTALIR O, LUKATSKAYA M R, ZHAO M Q, et al.Amine-assisted delamination of Nb2C MXene for Li-ion energy storage devices.Adv. Mater., 2015, 27(23): 3501-3506. |
[23] | MICHAEL G, LUKATSKAYA M R, ZHAO MENG-QIANG, et al.Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance.Nature, 2014, 516(7529): 78-81. |
[24] | SUN Z M.Progress in research and development on MAX phases: a family of layered ternary compounds.Int. Mater. Rev., 2011, 56(3): 143-166. |
[25] | NAGUIB M, MOCHALIN V N, BARSOUM M W, et al.25th anniversary article: MXenes: a new family of two-dimensional materials.Adv. Mater., 2014, 26(7): 992-1005. |
[26] | ZHANG H, WANG L, CHEN Q, et al.Preparation, mechanical and anti-friction performance of MXene/polymer composites.Mater. Design, 2016, 92(11): 682-689. |
[27] | MA T Y, CAO J L, JARONIEC M, et al.Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution.Angew. Chem., Int. Ed., 2016, 55(3): 1138-1142. |
[28] | ZHANG X, LEI J C, WU D H, et al.A Ti-anchored Ti2CO2 monolayer (MXene) as a single-atom catalyst for CO oxidation.J. Mater. Chem. A, 2016, 4(13): 4871-4876. |
[29] | SUN D D, HU Q K, CHEN J F, et al.Structural transformation of MXene (V2C, Cr2C, and Ta2C) with O groups during lithiation: A first-principles investigation.ACS Appl. Mater. Inter., 2016, 8(1): 74-81. |
[30] | GUO X, ZHANG X T, ZHAO S J, et al.High adsorption capacity of heavy metals on two-dimensional MXenes: an ab initio study with molecular dynamics simulation.Phys. Chem. Chem. Phys., 2016, 18(1): 228-233. |
[31] | WANG H, ZHANG J, WU Y, et al.Surface modified MXene Ti3C2 multilayers by aryl diazonium salts leading to large-scale delamination.Appl. Surf. Sci., 2016, 384: 287-293. |
[32] | WANG H, WU Y, ZHANG J, et al.Enhancement of the electrical properties of MXene Ti3C2 nanosheets by post-treatments of alkalization and calcination.Materials Letters, 2015, 160: 537-540. |
[33] | WANG K, ZHOU Y, XU W, et al.Fabrication and thermal stability of two-dimensional carbide Ti3C2 nanosheets.Ceram. Int., 2016, 42(7): 8419-8424. |
[34] | YANG J, LUO X, ZHANG S, et al.Magnetic and electronic properties of transition metal doped Sc2CT2 (T = O, OH or F) by a first principles study.Phys. Chem. Chem. Phys., 2016, 18(18): 12914-12919. |
[35] | PENG QIUMING, GUO JIANXIN, ZHANG QINGRUI, et al.Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide.J. Am. Chem. Soc., 2014, 136(11): 4113-4116. |
[36] | SHEIN I R, IVANOVSKII A L.Graphene-like titanium carbides and nitrides Tin+1Cn, Tin+1Nn(n= 1, 2, and 3) from de-intercalated MAX phases: First-principles probing of their structural, electronic properties and relative stability.Comp. Mater. Sci., 2012, 65: 104-114. |
[37] | SHEIN I R, IVANOVSKII A L.Planar nano-block structures Tin+1Al0.5Cn and Tin+1Cn(n = 1, and 2) from MAX phases: structural, electronic properties and relative stability from first principles calculations.Superlattices Microstruct., 2012, 52(2): 147-157. |
[38] | ENYASHIN A N, IVANOVSKII A L.Atomic structure, comparative stability and electronic properties of hydroxylated Ti2C and Ti3C2 nanotubes.Comput. Theor. Chem., 2012, 989(6): 27-32. |
[39] | TAO H, JIEMIN W, HUI Z, et al.Vibrational properties of Ti3C2 and Ti3C2T2 (T = O, F, OH) monosheets by first-principles calculations: a comparative study.Phys. Chem. Chem. Phys., 2015, 17(15): 9997-10003. |
[40] | ENYASHIN A N, IVANOVSKII A L.Two-dimensional titanium carbonitrides and their hydroxylated derivatives: structural, electronic properties and stability of MXenes Ti3C2-xNx(OH)2 from DFTB calculations.J. Solid State Chem., 2013, 207: 42-48. |
[41] | MAUCHAMP V, BUGNET M, BELLIDO E P, et al.Enhanced and tunable surface plasmons in two-dimensional Ti3C2 stacks: Electronic structure versus boundary effects.Phys. Rev. B, 2014, 89(23): 2495-2502. |
[42] | XIE Y, KENT P R C. Hybrid density functional study of structural and electronic properties of functionalized Tin+1Xn(X=C, N) monolayers.Phys. Rev. B, 2013, 87(23): 939-949. |
[43] | ZHAO S, KANG W, XUE J.Manipulation of electronic and magnetic properties of M2C (M=Hf, Nb, Sc, Ta, Ti, V, Zr) monolayer by applying mechanical strains.Appl. Phys. Lett., 2014, 104(13): 133106-133109. |
[44] | WANG S, LI J X, DU Y L, et al.First-principles study on structural, electronic and elastic properties of graphene-like hexagonal Ti2C monolayer.Computational Materials Science, 2014, 83: 290-293. |
[45] | LASHGARI H, ABOLHASSANI M R, BOOCHANI A, et al.Electronic and optical properties of 2D graphene-like compounds titanium carbides and nitrides: DFT calculations.Solid State Commun., 2014, 195(10): 61-69. |
[46] | LANE N J, BARSOUM M W, RONDINELLI J M.Correlation effects and spin-orbit interactions in two-dimensional hexagonal 5d transition metal carbides, Tan+1Cn (n = 1, 2, 3).EPL, 2013, 101(5): 57004-57008. |
[47] | KHAZAEI M, RANJBAR A, GHORBANIASL M, et al.Nearly free electron states in MXenes.Phys. Rev. B, 2016, 93(20): 205125-205135. |
[48] | SHAO JIAO-JING, ZHENG DE-YI, LI ZHENG-JIE, et al.Top-down fabrication of two-dimensional nanomaterials: controllable liquid phase exfoliation.New Carbon Materials, 2016, 31(2): 97-114. |
[49] | KHAZAEI M, ARAI M, SASAKI T, et al.Novel electronic and magnetic properties of two-dimensional transition metal carbides and Nitrides.Adv. Funct. Mater., 2013, 23(17): 2185-2192. |
[50] | WU F, LUO K, HUANG C, et al.Theoretical understanding of magnetic and electronic structures of Ti3C2 monolayer and its derivatives.Solid State Commun., 2015, 222: 9-13. |
[51] | LANE N J, BARSOUM M W, RONDINELLI J M.Electronic structure and magnetism in two-dimensional hexagonal 5d transition metal carbides, Tan+1Cn (n=1, 2, 3).Europhys. Lett., 2013, 101(5): 1-5. |
[52] | KURTOGLU M, NAGUIB M, GOGOTSI Y, et al.First principles study of two-dimensional early transition metal carbides.Mrs Communications, 2012, 2(4): 133-137. |
[53] | LING Z, REN C E, ZHAO M Q, et al.Flexible and conductive MXene films and nanocomposites with high capacitance.Proc. Natl. Acad. Sci. U. S. A., 2014, 111(47): 16676-16681. |
[54] | DIKIN D A, STANKOVICH S, ZIMNEY E J, et al.Preparation and characterization of graphene oxide paper.Nature, 2007, 448(7152): 457-460. |
[55] | LI Z, XU J, O'BYRNE J P, et al. Freestanding bucky paper with high strength from multi-wall carbon nanotubes.Mater. Chem. Phys., 2012, 135(2/3): 921-927. |
[56] | SUN D D, HU Q K, CHEN J F, et al. First principles calculations of the relative stability, structure and electronic properties of two dimensional metal carbides and nitrides. Key Eng. Mater., 2014, 602-603: 527-531. |
[57] | KHAZAEI M, ARAI M, SASAKI T, et al.The effect of the interlayer element on the exfoliation of layered MoAC (A = Al, Si, P, Ga, Ge, As or In) MAX phases into two-dimensional MoC nanosheets.Sci. Technol. Adv. Mat., 2014, 15(1): 1-7. |
[58] | NAGUIB M, HALIM J, LU J, et al.New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries.ChemInform, 2013, 135(43): 15966-15969. |
[59] | WANG L, YUAN L, CHEN K, et al.Loading actinides in multilayered structures for nuclear waste treatment: the first case study of uranium capture with vanadium carbide MXene.ACS Appl. Mater. Inter., 2016, 8(25): 16396-16403. |
[60] | CHANG F, LI C, YANG J, et al.Synthesis of a new graphene-like transition metal carbide by de-intercalating Ti3AlC2.Mater. Lett., 2013, 109(10): 295-298. |
[61] | SUN D, WANG M, LI Z, et al.Two-dimensional Ti3C2 as anode material for Li-ion batteries.Electrochem. Commun., 2014, 47(10): 80-83. |
[62] | MASHTALIR O, NAGUIB M, DYATKIN B, et al.Kinetics of aluminum extraction from Ti3AlC2 in hydrofluoric acid.Mater. Chem. Phys., 2013, 139(1): 147-152. |
[63] | HALIM J, LUKATSKAYA M R, COOK K M, et al.Transparent conductive two-dimensional titanium carbide epitaxial thin films.Chem. Mater., 2014, 26(7): 2374-2381. |
[64] | MASHTALIR O, NAGUIB M, MOCHALIN V N, et al.Intercalation and delamination of layered carbides and carbonitrides.Nat. Commun., 2013, 4(2): 216-219. |
[65] | NAGUIB M, UNOCIC R R, ARMSTRONG B L, et al.Large-scale delamination of multi-layers transition metal carbides and carbonitrides “Mxenes”.Dalton Trans., 2015, 44(20): 9353-9358. |
[66] | SI Y, SAMULSKI E T.Synthesis of water soluble graphene.Nano Lett., 2008, 8(6): 1679-1682. |
[67] | ORLER E B, YONTZ D J, MOORE R B.Sulfonation of syndiotactic polystyrene for model semicrystalline ionomer investigations.Macromolecules, 2002, 21(2): 73-82. |
[68] | LIU F, SUN J, ZHU L, et al.Sulfated graphene as an efficient solid catalyst for acid-catalyzed liquid reactions.J. Mater. Chem., 2012, 22(12): 5495-5502. |
[69] | NAGUIB M, COME J, DYATKIN B, et al.MXene: a promising transition metal carbide anode for lithium-ion batteries.Electrochem. Commun., 2012, 16(1): 61-64. |
[70] | KIM S J, NAGUIB M, ZHAO M, et al.High mass loading, binder-free MXene anodes for high areal capacity Li-ion batteries.Electrochim. Acta, 2015, 163: 246-251. |
[71] | LUKATSKAYA M R, OLHA M, REN C E, et al.Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide.Science, 2013, 341(6153): 1502-1505. |
[72] | YOON Y, LEE K, LEE H.Low-dimensional carbon and MXene-based electrochemical capacitor electrodes.Nanotechnology, 2016, 27(17): 172001-172021. |
[73] | DING B, WANG J, WANG Y, et al.A two-step etching route to ultrathin carbon nanosheets for high performance electrical double layer capacitors.Nanoscale, 2016, 8(21): 11136-11142. |
[74] | DALL'AGNESE Y, LUKATSKAYA M R, COOK K M, et al. High capacitance of surface-modified 2D titanium carbide in acidic electrolyte.Electrochem. Commun., 2014, 48(48): 118-122. |
[75] | XIAOHONG X, SIGUO C, WEI D, et al.An extraordinarily stable catalyst: Pt NPs supported on two-dimensional Ti3C2X2 (X = OH, F) nanosheets for oxygen reduction reaction.Chem. Commun., 2013, 49(86): 10112-10114. |
[76] | LI X, FAN G, ZENG C.Synthesis of ruthenium nanoparticles deposited on graphene-like transition metal carbide as an effective catalyst for the hydrolysis of sodium borohydride.Int. J. Hydrogen Energy, 2014, 39(27): 14927-14934. |
[77] | GAO Y, WANG L, LI Z, et al.Preparation of MXene-Cu2O nanocomposite and effect on thermal decomposition of ammonium perchlorate.Solid State Sci., 2014, 35(9): 62-65. |
[78] | ENYASHIN A N, IVANOVSKII A L.Structural and electronic properties and stability of MXenes Ti2C and Ti3C2 functionalized by methoxy groups.J. Phys. Chem. C, 2013, 117(26): 13637-13643. |
[79] | MASHTALIR O, COOK K M, MOCHALIN V N, et al.Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media.J. Mater. Chem., 2014, 2(35): 14334-14338. |
[80] | GAO Y, WANG L, ZHOU A, et al.Hydrothermal synthesis of TiO2/Ti3C2 nanocomposites with enhanced photocatalytic activity.Mater. Lett., 2015, 150: 62-64. |
[81] | HU QIANKU, SUN DANDAN, WU QINGHUA, et al.MXene: a new family of promising hydrogen storage medium.J. Phys. Chem. A, 2013, 117(51): 14253-14260. |
[82] | SUN DAN-DAN, HU QIAN-KU, LI ZHENG-YANG, et al.Research progress of new two-dimensional MXene crystals.Journal of Synthetic Crystals, 2014, 43(11): 2950-2956. |
[83] | 霍苗. 二维MXene衍生物对NaAlH4体系吸/放氢性能的影响. 河北: 河北师范大学硕士学位论文, 2016. |
[84] | YANG J, CHEN B, SONG H, et al.ChemInform abstract: Synthesis, characterization, and tribological properties of two-dimensional Ti3C2.Cryst. Res. Technol., 2014, 49(11): 926-932. |
[85] | WANG F, YANG C H, DUAN C Y, et al.An organ-like titanium carbide material (MXene) with multilayer structure encapsulating hemoglobin for a mediator-free biosensor.J. Electrochem. Soc., 2015, 162(1): 16-21. |
[86] | LIU H, DUAN C, YANG C, et al.A novel nitrite biosensor based on the direct electrochemistry of hemoglobin immobilized on MXene-Ti3C2.Sens. Actuators, B, 2015, 218: 60-66. |
[1] | 魏相霞, 张晓飞, 徐凯龙, 陈张伟. 增材制造柔性压电材料的现状与展望[J]. 无机材料学报, 2024, 39(9): 965-978. |
[2] | 李雷, 程群峰. 高性能MXenes纳米复合材料研究进展[J]. 无机材料学报, 2024, 39(2): 153-161. |
[3] | 徐向明, Husam N ALSHAREEF. MXetronics—MXene电子学[J]. 无机材料学报, 2024, 39(2): 171-178. |
[4] | 李腊, 沈国震. 二维MXenes材料在柔性光电探测器中的应用展望[J]. 无机材料学报, 2024, 39(2): 186-194. |
[5] | 巴坤, 王建禄, 韩美康. MXene的红外特性及其应用研究展望[J]. 无机材料学报, 2024, 39(2): 162-170. |
[6] | 尹建宇, 刘逆霜, 高义华. MXene在压力传感中的研究进展[J]. 无机材料学报, 2024, 39(2): 179-185. |
[7] | 邓顺桂, 张传芳. 多功能MXene油墨:面向印刷能源及电子器件的新视角[J]. 无机材料学报, 2024, 39(2): 195-203. |
[8] | 陈泽, 支春义. MXene在锌离子电池中的应用: 研究进展与展望[J]. 无机材料学报, 2024, 39(2): 204-214. |
[9] | 万胡杰, 肖旭. MXenes及其复合物的太赫兹电磁屏蔽与吸收[J]. 无机材料学报, 2024, 39(2): 129-144. |
[10] | 费玲, 雷蕾, 汪德高. 二维MXene材料在新型薄膜太阳能电池技术中的研究进展[J]. 无机材料学报, 2024, 39(2): 215-224. |
[11] | 周云凯, 刁亚琪, 王明磊, 张宴会, 王利民. 聚苯胺改性Ti3C2(OH)2抗氧化性的第一性原理计算研究[J]. 无机材料学报, 2024, 39(10): 1151-1158. |
[12] | 吴晓维, 张涵, 曾彪, 明辰, 孙宜阳. 杂化泛函HSE和PBE0计算CsPbI3缺陷性质的比较研究[J]. 无机材料学报, 2023, 38(9): 1110-1116. |
[13] | 丁玲, 蒋瑞, 唐子龙, 杨运琼. MXene材料的纳米工程及其作为超级电容器电极材料的研究进展[J]. 无机材料学报, 2023, 38(6): 619-633. |
[14] | 杨颖康, 邵怡晴, 李柏良, 吕志伟, 王路路, 王亮君, 曹逊, 吴宇宁, 黄荣, 杨长. Cl掺杂对CuI薄膜发光性能增强研究[J]. 无机材料学报, 2023, 38(6): 687-692. |
[15] | 王世怡, 冯爱虎, 李晓燕, 于云. Fe3O4负载Ti3C2Tx对Pb(II)的吸附性能研究[J]. 无机材料学报, 2023, 38(5): 521-528. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||