无机材料学报 ›› 2016, Vol. 31 ›› Issue (11): 1157-1165.DOI: 10.15541/jim20160119
• • 下一篇
袁 钦, 宋永才
收稿日期:
2016-03-03
修回日期:
2016-05-04
出版日期:
2016-11-10
网络出版日期:
2016-10-25
作者简介:
袁 钦(1983–), 男, 博士研究生. E-mail: yinzi863@163.com
基金资助:
YUAN Qin, SONG Yong-Cai
Received:
2016-03-03
Revised:
2016-05-04
Published:
2016-11-10
Online:
2016-10-25
About author:
YUAN Qin. E-mail: yinzi863@163.com
摘要:
连续SiC纤维最主要的制备方法是先驱体转化法, 目前已发展到第三代, 它主要作为SiC基复合材料(SiCf/SiC)的增强体。SiCf/SiC具有优异的耐高温、抗氧化和高温抗蠕变性, 及其在中子辐照条件下的低放射性, 成为高温、辐射等苛刻条件下结构部件的优先候选材料。本文首先对国内外SiC纤维的发展, 尤其是对第三代SiC纤维的不同制备思路和特征进行了介绍。然后, 对SiCf/SiC制备工艺和性能的进展进行了综述, 突出了制备工艺创新与SiC纤维发展的关系。最后, 对近几年SiCf/SiC在高性能航空发动机、聚变反应堆领域的应用进展进行了总结, 并对国内连续SiC纤维和SiCf/SiC复合材料的发展进行了展望。
中图分类号:
袁 钦, 宋永才. 连续SiC纤维和SiCf/SiC复合材料的研究进展[J]. 无机材料学报, 2016, 31(11): 1157-1165.
YUAN Qin, SONG Yong-Cai. Research and Development of Continuous SiC Fibers and SiCf/SiC Composities[J]. Journal of Inorganic Materials, 2016, 31(11): 1157-1165.
Generation | First | Second | Third | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Trade mark | Nicalon | Tyranno LOX-M | Hi-Nicalon | UF | Hi-Nicalon S | Tyranno SA3 | Sylramic | UF-HM | ||
Cross-linking method | Oxygen | Oxygen | Electron irradiation | non | Electron irradiation | Oxygen | Oxygen | non | ||
Production Temperature/℃ | 1200 | 1200 | 1300 | 1400 | >1500 | >1700 | >1700 | >1700 | ||
Element Compostion/wt% | 56Si+ 32C+ 12O | 54Si+ 32C+ 12O+2Ti | 63Si+ 37C+ 0.5O | 60Si+ 39C+ 1O | 69Si+ 31C+ 0.2O | 68Si+ 32C+ 0.6Al | 67Si+29C+ 0.8O+ 3.2B+0.4N +2.1Ti | 67Si+ 31C+ 2B | ||
Crystal state | Amorphous | Microcrystalline | Polycrystalline | |||||||
Crystalline size/nm | 2-3 | 2-3 | 5-10 | ≤5 | 20 | >60 | 40~60 | >50 | ||
Fiber diameter/μm | 14 | 11 | 12 | 10-15 | 12 | 7.5 | 10 | 10-15 | ||
Density/(g·cm-3) | 2.55 | 2.48 | 2.74 | 2.70 | 3.05 | 3.10 | 3.05 | 3.10 | ||
Tensile strength at RT/GPa | 3.0 | 3.3 | 2.8 | 2.8-3.5 | 2.6 | 2.9 | 3.0 | 2.1-3.5 | ||
Young’s modulus at RT/GPa | 200 | 185 | 270 | N/A | 400 | 375 | 400 | N/A | ||
Thermal conductivity /(W·mK) | 3 | 1.5 | 8 | N/A | 18 | 65 | 40 | N/A | ||
Cost (US$/kg) | 2000 | 1250 | 8000 | N/A | 13000 | 5000 | 10000 | N/A |
表1 三代SiC纤维的组成、结构、性能和价格[7-13]
Table 1 Details of composition, structure, properties, and cost of three generations SiC based fibers[7-13]
Generation | First | Second | Third | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Trade mark | Nicalon | Tyranno LOX-M | Hi-Nicalon | UF | Hi-Nicalon S | Tyranno SA3 | Sylramic | UF-HM | ||
Cross-linking method | Oxygen | Oxygen | Electron irradiation | non | Electron irradiation | Oxygen | Oxygen | non | ||
Production Temperature/℃ | 1200 | 1200 | 1300 | 1400 | >1500 | >1700 | >1700 | >1700 | ||
Element Compostion/wt% | 56Si+ 32C+ 12O | 54Si+ 32C+ 12O+2Ti | 63Si+ 37C+ 0.5O | 60Si+ 39C+ 1O | 69Si+ 31C+ 0.2O | 68Si+ 32C+ 0.6Al | 67Si+29C+ 0.8O+ 3.2B+0.4N +2.1Ti | 67Si+ 31C+ 2B | ||
Crystal state | Amorphous | Microcrystalline | Polycrystalline | |||||||
Crystalline size/nm | 2-3 | 2-3 | 5-10 | ≤5 | 20 | >60 | 40~60 | >50 | ||
Fiber diameter/μm | 14 | 11 | 12 | 10-15 | 12 | 7.5 | 10 | 10-15 | ||
Density/(g·cm-3) | 2.55 | 2.48 | 2.74 | 2.70 | 3.05 | 3.10 | 3.05 | 3.10 | ||
Tensile strength at RT/GPa | 3.0 | 3.3 | 2.8 | 2.8-3.5 | 2.6 | 2.9 | 3.0 | 2.1-3.5 | ||
Young’s modulus at RT/GPa | 200 | 185 | 270 | N/A | 400 | 375 | 400 | N/A | ||
Thermal conductivity /(W·mK) | 3 | 1.5 | 8 | N/A | 18 | 65 | 40 | N/A | ||
Cost (US$/kg) | 2000 | 1250 | 8000 | N/A | 13000 | 5000 | 10000 | N/A |
图1 热处理后纤维拉伸强度与结晶尺寸的关系(Ar, 1 h)[33]
Fig. 1 Relationship between tensile strength and the crystallite size for fibers annealed at elevated temperatures in Ar for 1 h[33]
[1] | MADAR R.Silicon carbide in contention.Nature, 2004, 430(7003): 974-975. |
[2] | EVANS A G.Prospective on the development of high toughness ceramics.J. Am. Ceram. Soc., 1990, 73(2): 187-206. |
[3] | MA QING-SONG, LIU HAI-TAO, PAN YU, et al.Research progress on the application of C/SiC composites in scramjet.Journal of Inorganic Materials, 2013, 28(3): 247-255. |
[4] | YAJIMA S, HAYASHI J, OMORI M, et al.Development of a SiC fiber with high tensile strength.Nature, 1976, 261(5562): 683-685. |
[5] | YAJIMA S, HASEGAWA Y, HAYASHI J, et al.Synthesis of continuous silicon carbide fibre with high tensile strength and high Young's modulus. I. Synthesis of polycarbosilane as precursor.J. Mater. Sci., 1978, 13(12): 2569-2576. |
[6] | HASEGAWA Y, IIMURA M, YAJIMA S.Synthesis of continuous silicon carbide fibre. II Conversion of polycarbosilane fibre into silicon carbide fibres.J. Mater. Sci., 1980, 15(3): 720-728. |
[7] | BUNSELL A R, PIANT A.A review of the development of three generations of small diameter silicon carbide fibres.J. Mater. Sci., 2006, 41(3): 823-839. |
[8] | NASLAIN R.Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview.Compos. Sci. Technol., 2004, 64(2): 155-170. |
[9] | ZHAO DA-FANG, WANG HAI-ZHE, LI XIAO-DONG.Development of polymer-derived SiC fiber.Journal of Inorganic Materials, 2009, 24(6): 1097-1104. |
[10] | ISHIKAWA T.Advances in inorganic fibers.Adv. Polym. Sci., 2005, 178: 109-144. |
[11] | SACKS M D.Effect of composition and heat treatment conditions on the tensile strength and creep resistance of SiC-based fibers. J. Eur. Ceram. Soc., 1999, 19(13/14): 2305-2315. |
[12] | SACKS M, SCHEIFFELE G, ZHANG L, et al.Polymer-derived SiC-based fibers with high tensile strength and improved creep resistance. Ceram. Eng. Sci. Proc., 1988, 19(3): 73-86. |
[13] | ISHIKAWA T, KOHTOKU Y, KUMAGAWA K, et al.High-strength alkali-resistant sintered SiC fiber stable to 2200℃.Nature, 1998, 391(6669): 773-775. |
[14] | WANG DE-YIN, MAO XIAN-HE, SONG YONG-CAI, et al.Preparation and properties of SiC fiber with a stable excess carbon layer on the surface.Journal of Inorganic Materials, 2009, 24(6): 1209-1213. |
[15] | COUSTUMER P L, MONTHIOUX M, OBERLIN A.Understanding Nicalon fibre.J. Eur. Ceram. Soc., 1993, 11(2): 95-103. |
[16] | WANG DE-YIN, SONG YONG-CAI, JIAN KE.Effect of composition and structure on the specific resistivity of continuous silicon carbide fibers.Journal of Inorganic Materials, 2012, 27(2): 162-168. |
[17] | SHIMOO T, CHEN H, OKAMURA K.High-temperature stability of Nicalon under Ar or O2 atmosphere.J. Mater. Sci., 1994, 29(2): 456-463. |
[18] | JOHNSON S M, BRITTAIN R D, LAMOREAUX R H, et al.Degradation mechanisms of silicon carbide fibers.J. Am. Ceram. Soc., 1988, 71(3): 132-135. |
[19] | SUGIMOTO M, SHIMOO T, OKAMURA K, et al.Reaction mechanisms of silicon carbide fiber synthesis by heat treatment of polycarbosilane fibers cured by radiation: I, Evolved gas analysis. J. Am. Ceram. Soc., 1995, 78(8): 1013-1017. |
[20] | TAKI T, OKAMURA K, SATO M, et al.A study on the electron irradiation curing mechanism of polycarbosilane fibers by solid-state 29Si high-resolution nuclear magnetic resonance spectroscopy.J. Mater. Sci. Lett., 1988, 7(3): 209-211. |
[21] | HASEGAWA Y.Si-C fiber prepared from polycarbosilane cured without oxygen.J. Inorg. Organomet. P., 1992, 2(1): 161-169. |
[22] | MAO X H, SONG Y C, LI W, et al.Mechanism of curing process for polycarbosilane fiber with cyclohexene vapor.J. Appl. Polym. Sci., 2007, 105(3): 1651-1657. |
[23] | TOREKI W, BATICH C D, SACKS M D, et al.Polymer-derived silicon carbide fibers with low oxygen content and improved thermomechanical stability.Compos. Sci. Technol., 1994, 51(2): 145-159. |
[24] | XUE JIN-GEN, WANG YING-DE, SONG YONG-CAI.Preparation of low oxygen SiC fiber by dry spinning.Journal of Inorganic Materials, 2007, 22(4): 681-684. |
[25] | TAKEDA M, IMAI YOSHIKAZU, ICHIKAWA HIROSHI, et al.Thermal stability of SiC fiber prepared by an irradiation-curing process.Compos. Sci. Technol., 1999, 59(6): 793-799. |
[26] | CHOLLON G, PAILLER R, NASLAIN R, et al.Thermal stability of a PCS-derived SiC fibre with a low oxygen content (Hi- Nicalon).J. Mater. Sci., 1997, 32(2): 327-347. |
[27] | SHIMOO T, OKAMURA K, MUTOH W.Oxidation behavior and mechanical properties of low-oxygen SiC fibers prepared by vacuum heat-treatment of electron-beam-cured poly(carbosilane) precursor.J. Mater. Sci., 2003, 38(8): 1653-1660. |
[28] | BODET R, BOURRAT X, LAMON J, et al.Tensile creep behaviour of a silicon carbide-based fibre with a low oxygen content.J. Mater. Sci., 1995, 30(3): 661-677. |
[29] | TAKEDA M, SAKAMOTO J, IMAI Y, et al.Properties of stoichiometric silicon carbide fiber derived from polycarbosilane.Ceram. Eng. Sci. Proc., 1994, 15(4): 133-141. |
[30] | TAKEDA M, SAEKI A, SAKAMOTO J, et al.Effect of hydrogen atmosphere on pyrolysis of cured polycarbosilane fibers.J. Am. Ceram. Soc., 2000, 83(5): 1063-1069. |
[31] | LIPOWITZ J, RABE J A, ZANGVIL A, et al.Structure and properties of Sylramic silicon carbide fiber-a polycrystalline, stoichiometric β-SiC composition.Ceram. Eng. Sci. Proc., 1997, 18(3): 147-157. |
[32] | TAKEDA M, SAEKI A, SAKAMOTO J, et al.Properties of polycarbosilane-derived silicon carbide fibers with various C/Si compositions.Compos. Sci. Technol., 1999, 59(6): 787-792. |
[33] | SHA J J, HINOKI T, KOHYAMA A.Microstructural characterization and fracture properties of SiC-based fibers annealed at elevated temperatures. J. Mater. Sci., 2007, 42(13): 5046-5056. |
[34] | IVEKOVIC A, NOVAK S, DRAZIC G, et al.Current status and prospects of SiCf/SiC for fusion structural applications.J. Eur. Ceram. Soc., 2013, 33(10): 1577-1589. |
[35] | DICARLO J A.Creep limitations of current polycrystalline ceramic fibers.Compos. Sci. Technol., 1994, 51(2): 213-217. |
[36] | LI YONG-QIANG, SONG YONG-CAI.Synthesis and spinnability of the high softening-point polycarbosilane.Chem. J. Chinese Universities, 2014, 35(10): 2272-2280. |
[37] | LI YONG-QIANG, SONG YONG-CAI, YUAN QIN.Synthesis and spinnability of the high softening-point polycarbosilane via bridge method.Acta Polymerica Sinica, 2015(2): 186-196. |
[38] | YUAN QIN, SONG YONG-CAI, WANG GUO-DONG.Adjusting the oxygen content of the cured polyaluminocarbosilane fibers.Chem. J. Chinese Universities, 2015, 36(6): 1213-1220. |
[39] | YUAN QIN, SONG YONG-CAI, WANG GUO-DONG.Studies on the air curing and oxygen control of polyaluminocarbosilane fibers with different Al contents.Acta Polymerica Sinica, 2016(2): 155-163. |
[40] | YUAN QIN, SONG YONG-CAI.Effects of Al and O content on the transformation from SiAlCO to Si(Al)C fibers after high temperature treatment.Journal of Inorganic Materials, 2016, 31(4): 393-400. |
[41] | SU Z, ZHANG L, LI Y, et al.Rapid preparation of SiC fibers using a curing route of electron irradiation in a low oxygen concentration atmosphere.J. Am. Ceram. Soc., 2015, 98(7): 2014-2017. |
[42] | TANG X, ZHANG L, TU H, et al.Decarbonization mechanisms of polycarbosilane during pyrolysis in hydrogen for preparation of silicon carbide fibers.J. Mater. Sci., 2010, 45(21): 5749-5755. |
[43] | ZHAO S, ZHOU X, YU J.Effect of heat treatment on the mechanical properties of PIP-SiC/SiC composites fabricated with a consolidation process.Ceram. Int., 2014, 40(3): 3879-3885. |
[44] | HE XIN-BO, QU XUAN-HUI, YE BIN.Preparation and mechanical properties of SiCf/SiC composites.Journal of Inorganic Materials, 2005, 20(3): 677-684. |
[45] | ZHAO SHUANG, YANG ZI-CHUN, ZHOU XIN-GUI.Fracture behavior of SiC/SiC composites with different interfaces.Journal of Inorganic Materials, 2016, 31(1): 58-62. |
[46] | KOTANI M, INOUE T, KOHYAMA A, et al.Effect of SiC particle dispersion on microstructure and mechanical properties of polymer-derived SiC/SiC composite.Mater. Sci. Eng. A, 2003, 357(1/2): 376-385. |
[47] | KOTANI M, INOUE T, KOHYAMA A, et al.Consolidation of polymer-derived SiC matrix composites: processing and microstructure. Compos. Sci. Technol., 2002, 62(16): 2179-2188. |
[48] | INTERRANTE L V, WHITMARSH C W, SHERWOOD W, et al.High yield polycarbosilane precursors to stoichiometric SiC synthesis, pyrolysis and application.Pro. Mater. Res. Soc., 1994, 346: 593-603. |
[49] | RUSHKIN I L, SHEN Q, LEHMAN S E, et al.Modification of a hyperbranched hydridopolycarbosilane as a route to new polycarbosilanes.Macromolecules, 1997, 30(11): 3141-3146. |
[50] | ZHAO S, YANG Z, ZHOU X.Microstructure and mechanical properties of compact SiC/SiC composite fabricated with an infiltrative liquid precursor.J. Am. Ceram. Soc., 2015, 98(4): 1332-1337. |
[51] | ZHAO S, ZHOU X, YU J, et al.SiC/SiC composite fabricated with carbon nanotube interface layer and a novel precursor LPVCS.Fusion Eng. Des., 2014, 89(2): 131-136. |
[52] | KOTANI M, KATOH Y, KOHYAMA A, et al.Fabrication and oxidation resistance property of allylhydridopolycarbosilane derived SiC/SiC composites.J. Ceram. Soc. Jpn., 2003, 111: 300-307. |
[53] | INTERRANTE L V, JACOBS J M, SHERWOOD W, et al. Fabrication and properties of fiber- and particulate-reinforced SiC matrix composites obtained with (A)HPCS as the matrix source. Key Eng Mater, 1996, 127-131: 271-278. |
[54] | NANNETTI C A, ORTONA A, PINTO D A, et al.Manufacturing SiC-fiber-reinforced SiC matrix composites by improved CVI/slurry infiltration/polymer impregnation and pyrolysis.J. Am. Ceram. Soc., 2004, 87(7): 1205-1209. |
[55] | XU YONG-DONG, CHENG LAI-FEI, ZHANG LI-TONG.Three dimensional textile SiC/SiC composites by chemical vapor infiltration.Journal of Inorganic Materials, 2001, 12(2): 344-348. |
[56] | KATOH Y, SNEAD L L, HENAGER C H, et al.Current status and recent research achievements in SiC/SiC composites.J. Nucl. Mater., 2014, 455(1/2/3): 387-397. |
[57] | BERTRAND S, LAVAUD J F, HADI R E, et al.The thermal gradient-pulse flow CVI process: a new chemical vapor infiltration technique for the densification of fibre preforms. J. Eur. Ceram. Soc., 1998, 18(7): 857-870. |
[58] | IGAWA N, TAGUCHI T, SNEAD L L, et al. Optimizing the fabrication process for superior mechanical properties in the FCVI SiC matrix/stoichiometric SiC fiber composite system. J Nucl. Mater., 2002, 307-311(Part 2): 1205-1209. |
[59] | NASLAIN R R, PAILLER R, BOURRAT X, et al. Processing of Ceramic Matrix Composites by Pulsed-CVI and Related Techniques. Key Eng. Mater., 1999, 159-160: 359-366. |
[60] | ZHOU QING, DONG SHAO-MING, ZHANG XIANG-YU, et al.Carbon fiber surfae coating by forced pressure-pulsed CVI.Journal of Inorganic Materials, 2006, 21(6): 58-62. |
[61] | SAYANO A, SUTOH C, SUYAMA S, et al. Development of a reaction-sintered silicon carbide matrix composite. J. Nucl. Mater., 1999, 271-272: 467-471. |
[62] | WANG H, ZHOU X, YU J, et al.Fabrication of SiCf/SiC composites by chemical vapor infiltration and vapor silicon infiltration.Mater. Lett., 2010, 64(15): 1691-1693. |
[63] | EINSET E O.Analysis of reactive melt infiltration in the processing of ceramics and ceramic composites.Chem. Eng. Sci., 1998, 53(5): 1027-1039. |
[64] | KATOH Y, SNEAD L L, HENAGER C H, et al. Current status and critical issues for development of SiC composites for fusion applications. J. Nucl. Mater., 2007, 367-370(Part A): 659-671. |
[65] | KOHYAMA A, PARK J S, JUNG H C.Advanced SiC fibers and SiC/SiC composites toward industrialization.J. Nucl. Mater., 2011, 417(1/2/3): 340-343. |
[66] | SHIMODA K, PARK J S, HINOKI T, et al. Microstructural optimization of high-temperature SiC/SiC composites by NITE process. J. Nucl. Mater., 2009, 386-388: 634-638. |
[67] | KOYANAGI T, KONDO S, HINOKI T.The influence of sintering additives on the irradiation resistance of NITE SiC.J. Nucl. Mater., 2011, 417(1/2/3): 435-439. |
[68] | KOHYAMA A, KATOH Y.Overview of CREST-ACE program for SiC/SiC ceramic composites and their energy system applications.Ceram. Trans., 2002, 144: 3-18. |
[69] | IEST Co Ltd. |
[70] | NOVAK S, RADE K, KONIG K, et al.Electrophoretic deposition in the production of SiC/SiC composites for fusion reactor applications.J. Eur. Ceram. Soc., 2008, 28(14): 2801-2807. |
[71] | NOVAK S, DRAZIC G, KONIG K, et al.Preparation of SiCf/SiC composites by the slip infiltration and transient eutectoid (SITE) process.J. Nucl. Mater., 2010, 399(2/3): 167-174. |
[72] | NOVAK S, IVEKOVIC A.Fabrication of SiCf/SiC composites by SITE-P process.J. Nucl. Mater., 2012, 427(1/2/3): 110-115. |
[73] | NASLAIN R.DESIGN. Preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview.Compos. Sci. Technol., 2004, 64(2): 155-170. |
[74] | CHEN S, HU H, ZHANG Y, et al.Rapid densification of C/SiC composites by joint processes of CLVD and PIP.Mater. Lett., 2011, 65(19/20): 3137-3139. |
[75] | YAN LIAN-SHENG, LI HE-JUN, CUI HONG, et al.Low-cost C/SiC composites prepared by CVI+pressure-PIP hybrid process.Journal of Inorganic Materials, 2006, 21(3): 664-670. |
[76] | WEN SHENG-QIONG, HE AI-JIE.Application of CMC on thermal parts of aeroengine.Aeronautical Manufacturing Technology, 2009(S1): 4-7. |
[77] | GAO TIE, HONG ZHI-LIANG, YANG JUAN.Application and prospect of ceramic matrix composite components for commercial aircraft engine.Aeronautical Manufacturing Technology, 2014(6): 14-21. |
[78] | MURTHY P, NEMETH N, BREWER D S, et al. Probabilistic analysis of a SiC/SiC ceramic matrix composite turbine vane.Compos. Part B-Eng., 2008(39): 694-703. |
[79] | VERRILLI M J, MARTIN L C, BREWER D N.RQL Sector Rig Testing of SiC/SiC Combustor Liners. NASA/TM-2002-211509, 2002. |
[80] | ELAM S, EFFMGER M, HOLMES R, et al.Lightweight Chambers for Thrust Cell Applications. 36th AIAA/ASME/ SAE/ASEE Joint Propulsion Conference and Exhibit, Alabama, 2000: 1-10. |
[81] | OGASAWARA T.Recent research activities regarding SiC-based ceramic composites for aerospace applications.J. Plasma Fusion Res., 2004, 80(1): 36-41. |
[82] | |
[83] | GE |
[84] | SMITH C L.The need for fusion.Fusion Eng. Des., 2005, 74(1-4): 3-8. |
[85] | ZHAO S, ZHOU X, YU J, et al.Compatibility of PIP SiCf/SiC with LiPb at 700℃.Fusion Eng. Des., 2010, 85(7/8/9): 1624-1626. |
[86] | SNEAD L L, JONES R H, KOHYAMA A, et al. Status of silicon carbide for fusion. J. Nucl. Mater., 1996, 233-237(Part 1): 26-36. |
[87] | NOZAWA T, HINOKI T, HASEGAWA A, et al. Recent advances and issues in development of silicon carbide composites for fusion applications. J. Nucl. Mater., 2009, 386-388: 622-627. |
[88] | SNEAD L L, NOZAWA T, FERRARIS M, et al.Silicon carbide composites as fusion power reactor structural materials.J. Nucl. Mater., 2011, 417(1/2/3): 330-339. |
[89] | HENAGER C H, KURTZ R J. Compatibility of interfaces and fibers for SiC-composites in fusion environments. J. Nucl. Mater., 2009, 386-388: 670-674. |
[90] | IHLI T, BASU T K, GIANCARLI L M, et al.Review of blanket designs for advanced fusion reactors.Fusion Eng. Des., 2008, 83(7/8/9): 912-919. |
[91] | NORAJITRA P, BUHLER L, FISCHER U, et al. The EU advanced lead lithium blanket concept using SiCf/SiC flow channel inserts as electrical and thermal insulators. Fusion Eng. Des., 2001, 58-59: 629-634. |
[92] | RAFFRAY A R, EL-GUEBALY L, GORDEEV S, et al. High performance blanket for ARIES-AT power plant. Fusion Eng. Des., 2001, 58-59: 549-553. |
[93] | NORAJITRAA P, ABDEL-KHALIK S I, GIANCARLI L M, et al. Divertor conceptual designs for a fusion power plant.Fusion Eng. Des., 2008, 83(7/8/9): 893-902. |
[94] | GOLFIER H, AIELLO G, FUTTERER A M, et al. Performance of the TAURO blanket system associated with a liquid-metal cooled divertor. Fusion Eng. Des., 2000, 49-50: 559-565. |
[1] | 丁玲, 蒋瑞, 唐子龙, 杨运琼. MXene材料的纳米工程及其作为超级电容器电极材料的研究进展[J]. 无机材料学报, 2023, 38(6): 619-633. |
[2] | 杨卓, 卢勇, 赵庆, 陈军. X射线衍射Rietveld精修及其在锂离子电池正极材料中的应用[J]. 无机材料学报, 2023, 38(6): 589-605. |
[3] | 陈强, 白书欣, 叶益聪. 热管理用高导热碳化硅陶瓷基复合材料研究进展[J]. 无机材料学报, 2023, 38(6): 634-646. |
[4] | 林俊良, 王占杰. 铁电超晶格的研究进展[J]. 无机材料学报, 2023, 38(6): 606-618. |
[5] | 牛嘉雪, 孙思, 柳鹏飞, 张晓东, 穆晓宇. 铜基纳米酶的特性及其生物医学应用[J]. 无机材料学报, 2023, 38(5): 489-502. |
[6] | 吴爽, 苟燕子, 王永寿, 宋曲之, 张庆雨, 王应德. 高温热处理对国产KD-SA型SiC纤维组成结构与力学性能的影响[J]. 无机材料学报, 2023, 38(5): 569-576. |
[7] | 苑景坤, 熊书锋, 陈张伟. 聚合物前驱体转化陶瓷增材制造技术研究趋势与挑战[J]. 无机材料学报, 2023, 38(5): 477-488. |
[8] | 杜剑宇, 葛琛. 光电人工突触研究进展[J]. 无机材料学报, 2023, 38(4): 378-386. |
[9] | 杨洋, 崔航源, 祝影, 万昌锦, 万青. 柔性神经形态晶体管研究进展[J]. 无机材料学报, 2023, 38(4): 367-377. |
[10] | 游钧淇, 李策, 杨栋梁, 孙林锋. 氧化物双介质层忆阻器的设计及应用[J]. 无机材料学报, 2023, 38(4): 387-398. |
[11] | 张超逸, 唐慧丽, 李宪珂, 王庆国, 罗平, 吴锋, 张晨波, 薛艳艳, 徐军, 韩建峰, 逯占文. 新型GaN与ZnO衬底ScAlMgO4晶体的研究进展[J]. 无机材料学报, 2023, 38(3): 228-242. |
[12] | 陈昆峰, 胡乾宇, 刘锋, 薛冬峰. 多尺度晶体材料的原位表征技术与计算模拟研究进展[J]. 无机材料学报, 2023, 38(3): 256-269. |
[13] | 齐占国, 刘磊, 王守志, 王国栋, 俞娇仙, 王忠新, 段秀兰, 徐现刚, 张雷. GaN单晶的HVPE生长与掺杂进展[J]. 无机材料学报, 2023, 38(3): 243-255. |
[14] | 林思琪, 李艾燃, 付晨光, 李荣斌, 金敏. Zintl相Mg3X2(X=Sb, Bi)基晶体生长及热电性能研究进展[J]. 无机材料学报, 2023, 38(3): 270-279. |
[15] | 刘岩, 张珂颖, 李天宇, 周菠, 刘学建, 黄政仁. 陶瓷材料电场辅助连接技术研究现状及发展趋势[J]. 无机材料学报, 2023, 38(2): 113-124. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||