[1] |
GONG K P, DU F, XIA Z H, et al.Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction.Science, 2009, 323(5915): 760-764.
|
[2] |
LIN Z, WALLER G H, LIU Y, et al.Simple preparation of nanoporous few-layer nitrogen-doped graphene for use as an efficient electrocatalyst for oxygen reduction and oxygen evolution reactions.Carbon, 2013, 53(3): 130-136.
|
[3] |
SHI Q, LEI Y P, WANG Y D, et al.B, N-codoped 3D micro-/ mesoporous carbon nanofibers web as efficient metal-free catalysts for oxygen reduction.Curr. Appl. Phys., 2015, 15(12): 1606-1614.
|
[4] |
WU G, MORE K L, JOHNSTON C M, et al.High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt.Science, 2011, 332(6028): 443-447.
|
[5] |
HAN C, WANG Y D, LEI Y P, et al.In situ synthesis of graphitic-C3N4 nanosheet hybridized N-doped TiO2 nanofibers for efficient photocatalytic H2 production and degradation.Nano Res., 2015, 8(4): 1199-1209.
|
[6] |
WU N, WANG Y D, LEI Y P, et al.Preparation and photocatalytic activity of N-Ag co-doped TiO2/C porous ultrafine fibers mat.Ceram. Int., 2014, 40(1): 2017-2022.
|
[7] |
XIE S, WANG Y D, LEI Y P, et al.Simply prepared flexible SiBOC ultrafine fiber mat with enhanced high-temperature stability and chemical resistance.RSC Adv., 2015, 5(80): 64911-64917.
|
[8] |
WANG Y D, WANG B, LEI Y P, et al.Scalable in situ growth of SnO2 nanoparticle chains on SiC ultrathin fibers via a facile Sol-Gel-flame method.Appl. Surf. Sci., 2015, 335: 208-212.
|
[9] |
GUO L P, BAI J, LIANG H O, et al.Preparation and application of carbon nanofibers-supported palladium nanoparticles catalysts based on electrospinning.J. Inorg. Mater., 2014, 29(8): 814-820.
|
[10] |
WANG B, WANG Y D, LEI Y P, et al. Tailoring of porous structure in macro-meso-microporous SiC ultrathin fibers via electrospinning combined with polymer-derived ceramics route. Mater. Manuf. Process., .
|
[11] |
WANG B, WANG Y D, LEI Y P, et al.Hierarchically porous SiC ultrathin fibers mat with enhanced mass transport, amphipathic property and high-temperature erosion resistance.J. Mater. Chem. A, 2014, 2(48): 20873-20881.
|
[12] |
WANG Y D, HAN C, ZHENG D C, et al.Large-scale, flexible and high-temperature resistant ZrO2/SiC ultrafine fibers with a radial gradient composition.J. Mater. Chem. A, 2014, 2(25): 9607-9612.
|
[13] |
WANG H G, YUAN S, MA D L, et al.Electrospun materials for lithium and sodium rechargeable batteries: from structure evolution to electrochemical performance.Energy Environ. Sci., 2015, 6(8): 1660-1681.
|
[14] |
DALLMEYER I, LIN L T, LI Y J, et al.Preparation and characterization of interconnected, kraft lignin-based carbon fibrous materials by electrospinning.Macromol. Mater. Eng., 2014, 299(5): 540-551.
|
[15] |
CHENG Y L, HUANG L, XIAO X, et al.Flexible and cross-linked N-doped carbon nanofiber network for high performance free standing supercapacitor electrode.Nano Energy, 2015, 15: 66-74.
|
[16] |
YE T N, LV L B, LI X H, et al.Strongly veined carbon nanoleaves as highly efficient metal-free electrocatalyst.Angew. Chem. Int. Ed., 2014, 53(27): 6905-6909.
|
[17] |
SHI Q, WANG Y D, WANG Z M, et al.3D interconnected networks constructed by in situ growth of N-doped graphene/carbon nanotubes on cobalt-containing carbon nanofibers for enhanced oxygen reduction.Nano Res., 2015, doi: 10.1007/s12274-015-0911-y.
|
[18] |
HUANG D, LUO Y, LI S, et al.Active catalysts based on cobalt oxide@cobalt/N-C nanocomposites for oxygen reduction reaction in alkaline solutions.Nano Res., 2014, 7(7): 1054-1064.
|
[19] |
LIANG J, ZHOU R F, CHEN X M, et al.Fe-N decorated hybrids of CNTs grown on hierarchically porous carbon for high-performance oxygen reduction.Adv. Mater., 2014, 26(35): 6074-6079.
|
[20] |
LIANG J, DU X, GIBSON C, et al.N-doped graphene natively grown on hierarchical ordered porous carbon for enhanced oxygen reduction.Adv. Mater., 2013, 25(43): 6226-6231.
|
[21] |
KANG Y, CHU Z Y, ZHANG D J, et al.Incorporate boron and nitrogen into graphene to make BCN hybrid nanosheets with enhanced microwave absorbing properties.Carbon, 2013, 61(11): 200-208.
|
[22] |
ZHANG Y H, YI Q F, LIU X P, et al.Carbonizing products of the Fe/Co doped polypyrrole as efficient electrocatalysts for exygen reduction reaction.J. Inorg. Mater., 2014, 29(3): 269-274.
|
[23] |
WU N, WANG Y D, LEI Y P, et al.Flexible N-doped TiO2/C ultrafine fiber mat and its photocatalytic activity under simulated sunlight.Appl. Surf. Sci., 2014, 319: 136-142.
|
[24] |
MA Y, WANG S, CHEN Z H.In situ growth of a carbon interphase between carbon fibres and a polycarbosilane-derived silicon carbide matrix.Carbon, 2011, 49(8): 2869-2872.
|
[25] |
ZHENG Y, JIAO Y, GE L, et al.Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis.Angew. Chem. Int. Ed., 2013, 125(11): 3192-3198.
|
[26] |
REN G Y, LI Y N, GUO Z Y, et al.Bio-inspired Co3O4- polypyrrole-graphene complex as efficient oxygen reduction catalyst by one-step ball-milling.Nano Res., 2015, 8(11): 3461-3471.
|
[27] |
JAGADEESH R, JUNGE H, POHL M, et al.Selective oxidation of alcohols to esters using heterogeneous Co3O4-N@C catalysts under mild conditions.J. Am. Chem. Soc., 2013, 135(29): 10776-10782.
|
[28] |
LIANG Y, LI Y, WANG H, et al.Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction.Nat. Mater., 2011, 10(10): 780-786.
|
[29] |
LEE J S, PARK G S, KIM S T, et al.A highly efficient electrocatalyst for the oxygen reduction reaction: N-doped ketjenblack incorporated into Fe/Fe3C-functionalized melamine foam.Angew. Chem. Int. Ed., 2013, 52(3): 1026-1030.
|
[30] |
ZHANG G X, XU Y Q, WANG L, et al.Rational design of graphene oxide and its hollow CoO composite for superior oxygen reduction reaction.Sci. China Mater., 2015, 58(7): 534-542.
|