[1] |
MIKKELSEN M, JORGENSEN M, KREBS F C.The teraton challenge. a review of fixation and transformation of carbon dioxide. Energy Environ. Sci., 2010, 3: 43-81.
|
[2] |
WANG W, WANG S P, MA X B, et al.Recent advances in catalytic hydrogenation of carbon dioxide. Chem. Soc. Rev., 2011, 40(7): 3703-3727.
|
[3] |
DING M Y, YANG Y, WU B S, et al.Study of phase transformation and catalytic performance on precipitated iron-based catalyst for Fischer-Tropsch synthesis,J. Mol. Catal. A: Chem., 2009, 303: 65-71.
|
[4] |
KHODAKOV A Y, WEI C, PASCAL F.Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem. Rev., 2007, 107: 1692-1744.
|
[5] |
BORG Ø, ERI S, BLEKKAN E A, et al. Fischer-Tropsch synthesis over γ-alumina-supported cobalt catalysts: Effect of support variables. J. Catal., 2007, 248: 89-100.
|
[6] |
ZHAO G Y, ZHANG C H, QIN S D, et al.Effect of interaction between potassium and structural promoters on Fischer-Tropsch performance in iron-based catalysts. J. Mol. Catal. A: Chem., 2008, 286: 137-142.
|
[7] |
BORG Ø, HAMMER N, ERI S, et al. Fischer-Tropsch synthesis over un-promoted and Re-promotedg-Al2O3 supported cobalt catalysts with different pore sizes. Catal. Today, 2009, 142: 70-77.
|
[8] |
DORNER R W, HARDY D R, WILLIAMS F W, et al.K and Mn doped iron-based CO2 hydrogenation catalysts: detection of KAlH4 as part of the catalyst's active phase. Appl. Catal. A: General, 2010, 373: 112-121.
|
[9] |
HE XUE-ZHI, LI BING-JIE, WU ZHI-JIAN, et al. The preparation of layered double metals hydroxides Zn(Cu)/Al-LDHs and the photocatalytic reduction of CO2. J. Mol. Catal (China), 2013, 27(1): 70-75.
|
[10] |
KONG X Q, TANG X J, XU S, et al.Preparation CuO-ZnO/Al2O3 by Sol-Gel auto-combustion method and its catalytic property for methanol synthesis from CO2 hydrogen. J. Mol. Catal.(China), 2013, 27(2): 159-165.
|
[11] |
ZHANG Y J, DENG J L, ZHANG S J, et al.Investigation on CuO-ZnO-Al2O3/HZSM-5 catalyst for synthesis of dimethyl ether from CO2 hydrogen. J. Mol. Catal.(China), 2013, 27(3): 235-241.
|
[12] |
ROY S C, VARGHESE O K, PAULOSE M.Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano, 2010, 4(3): 1259-1278.
|
[13] |
DONG H Z, YIN X H, SUI D D, et al.Calculation of CO2 adsorption on SrTiO3(100) with density funcational theory. J. Mol. Catal.(China), 2012, 26(6): 554-559.
|
[14] |
XIE S J, WANG Y, ZHANG Q H.Photocatalytic reduction of CO2 with H2O: significant enhancement of the activity of Pt-TiO2 in CH4 formation by addition of MgO. Chem. Commun., 2013, 49: 2451-2453.
|
[15] |
FUJISHIMA A, HONDA K.Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37-38.
|
[16] |
NOZIK A J.Photoelectrolysis of water using semiconducting TiO2 crystals. Nature, 1975, 257(5525): 383-386.
|
[17] |
INOUE T, FUJISHIMA A, KONISHI S.Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature, 1979, 277: 637-638.
|
[18] |
KONG D.Electrodeposited Ag nanoparticles on TiO2 nanorods for enhanced UV visible light photoreduction CO2 to CH4. Appl. Surf. Sci., 2013, 277: 105-110.
|
[19] |
ZHANG Q H, HAN W D, HONG Y J.Photocatalytic reduction of CO2 with H2O on Pt-loaded TiO2 catalyst. Catal. Today, 2009, 148: 335-340.
|
[20] |
THAMPI K R, KIWI J, GRATZEL M.Methanation and photo-methanation of carbon dioxide at room temperature and atmospheric pressure. Nature, 1987, 327: 506-508.
|
[21] |
LI X K, ZHUANG Z J, LI W. Photocatalytic reduction of CO2 over noble metal-loaded and nitrogen-doped mesoporous TiO2. Appl. Catal. A: General, 2012, 429-430: 31-38.
|
[22] |
YU K P, YU W Y, KUO M C, et al.Pt/titania-nanotube: a potential catalyst for CO2 adsorption and hydrogenation. Appl. Catal. B: Environ., 2008, 84: 112-118.
|
[23] |
JACQUEMIN M, BEULS A, RUIZ P.Catalytic production of methane from CO2 and H2 at low temperature: insight on the reaction mechanism. Catal. Today, 2010, 157: 462-466.
|
[24] |
SCHILD C, WOKAUN A, BAIKER A.On the mechanism of CO and CO2 hydrogenation reactions on zirconia-supported catalysts: a diffuse reflectance FTIR study Part II. Surface species on copper/zirconia catalysts: implications for methanol synthesis selectivity. J. Mol. Catal., 1990, 63: 243-254.
|
[25] |
LO C C, HUNG C H, YUAN C S.Photoreduction of carbon dioxide with H2 and H2O over TiO2 and ZrO2 in a circulated photocatalytic reactor. Solar Energy Materials & Solar Cells, 2007, 91: 1765-1774.
|
[26] |
DIMITRIJEVIC N M, VIJAYAN B K, POLUEKTOV O G.Role of water and carbonates in photocatalytic transformation of CO2 to CH4 on titania. J. Am. Chem. Soc., 2011, 133: 3964-3971.
|
[27] |
VARGHESE O K, PAULOS M, LATEMPA T J, et al.High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Lett., 2009, 9(2): 731-737.
|
[28] |
ABE T, TANIZAWA M, WATANABE K, et al.CO2 methanation property of Ru nanoparticle-loaded TiO2 prepared by a polygonal barrel-sputtering method. Energy Environ. Sci., 2009, 2: 315-321.
|
[29] |
JIANG QI, ZHU ZHI-CHEN, HUANG ZHONG-TAO. The catalytic activity of supported Ru catalyst for the methanation of CO2. Journal of South China University of Technology (Natural Science), 1996, 24(12): 109-114.
|
[30] |
LI BO, LU GONG-XUAN. Cosensitized TiO2 with different dyes for water splitting to hydrogen under visible light—structural similarity of dyes and their dual promoting effect. J. Mol. Catal (China), 2013, 27(4): 181-191.
|
[31] |
WU YU-QI, LU GONG-XUAN, ZHOU QUAN, et al. Hydrogen production by Pt/TiO2 photocatalytic reforming of ethanol. J. Mol. Catal (China), 2004, 16(2): 101-106.
|
[32] |
ZHEN WEN-LONG, LI BO, LU GONG XUAN, et al. Enhancing catalytic activity and stability for CO2 methanation on Ni-Ru/γ-Al2O3 via modulating impregnation sequence and controlling surface active species. RSC Adv., 2014, 4: 16472-16479.
|
[33] |
ELMASIDES C, KONDARIDES D I, GRULNERT W, et al.XPS and FTIR study of Ru/Al2O3 and Ru/TiO2 catalysts: reduction characteristics and interaction with a methane-oxygen mixture. J. Phys. Chem. B., 1999, 103: 5227-5239.
|
[34] |
ZHAI Q G, XIE S J, FAN W Q.Photocatalytic conversion of carbon dioxide with water into methane: Platinum and Copper(I) Oxide co-catalysts with a core-Shell structure. Angew. Chem. Int. Ed., 2013, 52: 5776-5779.
|
[35] |
FRESE K W, LEACH S.Electrochemical reduction of carbon dioxide to methane, methanol, and CO on Ru electrodes. J. Electrochem. Soc., 1985, 132: 259-260.
|
[36] |
WISE H, MCCARTHY J G.Thermodynamic properties of surface carbon on Ruthenium. Surface Sci., 1983, 133: 311-320.
|
[37] |
SOLYMOSI F, ERDOHELYI A, KOCSIS M.Methanation of CO2 on supported Ru catalysts. J. Chem. Soc., Faraday Trans., 1981, 77(1): 1003-1012.
|
[38] |
PRAIRIE M R, RENKEN A, HIGHFIELD J G, et al.A fourier transform infrared spectroscopic study of CO2 methanation on supported ruthenium. J. Catal., 1991, 129(1): 130-144.
|
[39] |
MICHEL MARWOOD, RALF DOEPPER, ALBERT RENKEN. In-situ surface and gas phase analysis for kinetic studies under transient conditions The catalytic hydrogenation of CO2. Appl. Catal. A: General., 1997, 151: 223-246.
|