无机材料学报 ›› 2014, Vol. 29 ›› Issue (3): 237-244.DOI: 10.3724/SP.J.1077.2014.13185
詹 斌1, 兰金叻1, 刘耀春2, 丁靖轩1, 林元华1, 南策文1
收稿日期:
2013-04-02
修回日期:
2013-05-21
出版日期:
2014-03-20
网络出版日期:
2014-02-18
作者简介:
詹 斌(1988–), 男, 博士研究生. E-mail:zhanb10@mails.tsinghua.edu.cn
基金资助:
ZHAN Bin1, LAN Jin-Le1, LIU Yao-Chun2, DING Jing-Xuan1, LIN Yuan-Hua1, NAN Ce-Wen1
Received:
2013-04-02
Revised:
2013-05-21
Published:
2014-03-20
Online:
2014-02-18
About author:
ZHAN Bin. E-mail:zhanb10@mails.tsinghua.edu.cn
Supported by:
摘要:
氧化物基热电材料具有高温稳定性、抗氧化性和安全长效等优点而受到人们的广泛关注, 但其应用受到了热电性能的限制。本文详细介绍了几种典型氧化物热电体系, 如层状钴基氧化物、钙钛矿结构化合物、透明导电氧化物和一些新型氧化物热电材料的研究进展。从能带结构和微观形貌两方面入手进行调节, 以达到热电材料热学性能和电学性能的协调统一。分析了氧化物热电材料研究中的主要问题, 并对未来的发展提出了一些新的思路。
中图分类号:
詹 斌, 兰金叻, 刘耀春, 丁靖轩, 林元华, 南策文. 氧化物热电材料研究进展[J]. 无机材料学报, 2014, 29(3): 237-244.
ZHAN Bin, LAN Jin-Le, LIU Yao-Chun, DING Jing-Xuan, LIN Yuan-Hua, NAN Ce-Wen. Research Progress of Oxides Thermoelectric Materials[J]. Journal of Inorganic Materials, 2014, 29(3): 237-244.
[1] | SOOTSMAN J R, CHUNG D Y, KANATZIDIS M G. New and old concepts in thermoelectric materials. Angew. Chem. Int. Ed, 2009, 48(46): 8616-8639. |
[2] | SALES B C, MANDRUS D, CHAKOUMAKOS B C, et al. Filled skutterudite antimonides: electron crystals and phonon glasses. Phys. Rev. B, 1997, 56(23): 15081-15089. |
[3] | SAKURADA S, SHUTOH N. Effect of Ti substitution on the thermoelectric properties of (Zr,Hf)NiSn half-Heusler compounds. Appl. Phys. Lett., 2005, 86(8): 082105-1-3. |
[4] | BEEKMAN M, NOLAS G S. Inorganic clathrate-II materials of group 14: synthetic routes and physical properties. J. Mater. Chem., 2008, 18(8): 842-851. |
[5] | POUDEL B, HAO Q, MA Y, et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science, 2008, 320(5876): 634-638. |
[6] | HEREMANS J P, JOVOVIC V, TOBERER E S, et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science, 2008, 321(5888): 554-557. |
[7] | HSU K F, LOO S, GUO F, et al. Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit. Science, 2004, 303(5659): 818-821. |
[8] | DRESSELHAUS M S, CHEN G, TANG M Y, et al. New directions for low- dimensional thermoelectric materials. Adv. Mater., 2007, 19(8): 1043-1053. |
[9] | VENKATASUBRAMANIAN R, SIIVOLA E, COLPITTS T, et al. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature, 2001, 413(6856): 597-602. |
[10] | YU B, ZEBARJADI M, WANG H, et al. Enhancement of thermoelectric properties by modulation-doping in silicon germanium alloy nanocomposites. Nano Lett., 2012, 12: 2077-2082. |
[11] | XIE H H, WANG H, PEI Y Z, et al. Beneficial contribution of alloy disorder to electron and phonon transport in half-heusler thermoelectric materials. Adv. Funct. Mater., 2013, 23(41): 5123-5130. |
[12] | DUAN B, ZHAI P C, LIU L S, et al. Benificial effect of Se substitution on thermoelectric properties in Co4Sb12-x-yTexSey skutterudites. AIP Conf. Proc., 2012, 1449: 239-242. |
[13] | DENG L, JIA X P, MA H A, et al. The thermoelectric properties of InxM0.2Co4Sb12 (M=Ba and Pb) double-filled skutterudites. Solid State Communications, 2013, 163: 15-18. |
[14] | POUDEU P F P, D’ANGELO J, DOWNEY A D, et al. High thermoelectric figure of merit and nanostructuring in bulk p-type Na1-xPbmSbyTem+2. Angew. Chem. Int. Ed, 2006, 118(23): 3835-3839. |
[15] | CAILLAT T, FLEURIAL J P, BORSHCHEVSKY A. Preparation and thermoelectricproperties of semiconducting Zn4Sb3. J. Phys. Chem. Solids, 1997, 58(7): 1119-1125. |
[16] | WANG X W, LEE H, LAN Y C, et al. Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy. Appl. Phys. Lett, 2008, 93(19): 193121-1-3. |
[17] | WANG Y, SUI Y, CHENG J G, et al. Comparison of the high temperature thermoelectric properties for Ag-doped and Ag-added Ca3Co4O9. J. Alloys Compd., 2009, 477(1/2): 817-821. |
[18] | ITO M, FURUMOTO D. Microstructure and thermoelectric properties of NaxCo2O4/Ag composite synthesized by the polymerized complex method. J. Alloys Compd., 2008, 450(1/2): 517-520. |
[19] | KIKUCHI A, OKINAKA N, AKIYAMA T. A large thermoelectric figure of merit of La-doped SrTiO3 prepared by combustion synthesis with post-spark plasma sintering. Scripta Mater., 2010, 63(4): 407-410. |
[20] | WANG Y, SUI Y, SU W H. High temperature thermoelectric characteristics of Ca0.9R0.1MnO3 (R= La, Pr, …, Yb). J. Appl. Phys., 2008, 104(9): 93703. |
[21] | OHTAKI M, ARAKI K, YAMAMOTO K. High thermoelectric performance of dually doped ZnO ceramics. J. Electron. Mater., 2009, 38(7): 1234-1238. |
[22] | LI J, SUI J H, PEI Y L, et al. A high thermoelectric figure of merit ZT>1 in Ba heavily doped BiCuSeO oxyselenides. Energy Environ. Sci., 2012, 5(9): 8543-8547. |
[23] | KAGA H, ASAHI R, TANI T. Thermoelectric properties of highly textured Ca-doped (ZnO)mIn2O3 ceramics. Jpn. J. Appl. Phys., 2004, 41(2): 37-42. |
[24] | TERASAKI I, SASAGO Y, UCHINOKURA K. Large thermoelectric power in NaCo2O4 single crystals. Phys. Rev. B, 1997, 56(20): R12685-R12687. |
[25] | ZHANG J X, ZHANG Q Y, LIU Y Q, et al. Improved Thermoelectric Properties of Ca3-xBaxCo4O9 (x=0~0.4) Bulks by Sol-Gel and SPS Method. Proc 2006 Int Conf Thermoelectrics, IEEE, 2006: 66-69. |
[26] | WANG Y, SUI Y, WANG X J, et al. Enhanced high temperature thermoelectric characteristics of transition metals doped Ca3Co4O9+δ by cold high-pressure fabrication. J. Appl. Phys., 2010, 107(3): 033708-1-9. |
[27] | NAGIRA T, ITO M, KATSUYAMA S, et al. Thermoelectric properties of (Na1-yMy)xCo2O4 (M=K, Sr, Y, Nd, Sm and Yb; y=0.01-0.35). J Alloys Compd., 2003, 348(1/2): 263-269. |
[28] | ITO M, NAGIRA T, HARA S. Thermoelectric properties of NaxCo2O4 withrare-earth metals doping preparedby polymerized complex method. J. Alloys Compd., 2006, 408-412: 1217-1221. |
[29] | WANG H C, WANG C L, SU W B, et al. Doping effect of La and Dy on the thermoelectric properties of SrTiO3. J. Am. Ceram. Soc., 2011, 94(3): 838-842. |
[30] | WANG N, HE H C, BA Y S, et al. Thermoelectric properties of Nb-doped SrTiO3 ceramics enhanced by potassium titanate nano- wires addition. J. Ceram. Soc. Jpn., 2010, 118(1383): 1098-1101. |
[31] | WANG Y, SUI Y, WANG X J, et al. Enhancement of thermoelectric ef-ficiency in (Ca,Dy)MnO3-(Ca,Yb)MnO3 solid solutions. Appl. Phys. Lett., 2010, 97(5): 052109-1-3. |
[32] | LAN J L, LIN Y H, FANG H, et al. High-temperature thermoelectric behaviors of fine-grained Gd-doped CaMnO3 ceramics. J. Am. Ceram. Soc., 2010, 93(8): 2121-2124. |
[33] | WIFF J P, KINEMUCHI Y, KAGA H, et al. Correlations between thermoelectric properties and effective mass caused by lattice distortion in Al-doped ZnO ceramics. J. Eur. Ceram. Soc., 2009, 29(8): 1413-1418. |
[34] | KINEMUCHI Y, MIKAMI M, KOBAYASHI K, et al. Thermoelectric properties of nanograined ZnO. J. Electron. Mater., 2010, 39(9): 2059-2063. |
[35] | MA N, LI J F, ZHANG B P, et al. Microstructure and thermoelectric properties of Zn1-xAlxO ceramics fabricated by spark plasma sintering. Journal of Physics and Chemistry of Solids, 2010, 71(9): 1344-1349. |
[36] | LAN J L, LIN Y H, LIU Y, et al. High thermoelectric performance of nanostructured In2O3-based ceramics. J. Am. Ceram. Soc., 2012, 95(8): 2465-2469. |
[37] | EMMANUEL C, SHEKHAR D B, EMMANUEL G, et al. Synthesis of In2-xGexO3 nanopowders for thermoelectric applications. J. Mater. Res., 2012, 27(2): 500-505. |
[38] | LI F, LI J F, ZHAO L D, et al. Polycrystalline BiCuSeO oxide as a potential thermoelectric material. Energy Environ. Sci., 2012, 5: 7188-7195. |
[39] | ZHAO L D, BERARDAN D, PEI Y L, et al. Bi1-xSrxCuSeO oxyselenides as promising thermoelectric materials. Appl. Phys. Lett., 2010, 97(9): 092118-1-3. |
[40] | OHTA H, SUGIURA K, KOUMOTO K. Recent progress in oxide thermoelectric materials: p-type Ca3Co4O9 and n-type SrTiO3. Inorg. Chem., 2008, 47(19): 8429-8436. |
[41] | KOSHIBAE W, TSUTSUI K, MAEKAWA S. Thermopower in cobalt oxides. Phys. Rev. B, 2000, 62(11): 6869-6872. |
[42] | MASSET A C, MICHEL C, MAIGNAN M, et al. Misfit-layered cobaltite with an anisotropic giant magnetoresistance: Ca3Co4O9. Phys. Rev. B, 2000, 62(1): 166-175. |
[43] | KLIE R F, QIAO Q, PAULAUSKAS T, et al. Observations of Co4+ in a higher spin state and the increase in the seebeck coefficient of thermoelectric Ca3Co4O9. Phy. Rev. Lett., 2012, 108(19): 196601-1-3. |
[44] | PRASOETSOPHA N, PINITSOONTORN S, AMORNKITBAMRUNG V. Synthesis and thermoelectric properties of Ca3Co4O9 prepared by a simple thermal hydro-decomposition method. Electronic Materials Letters, 2012, 8(3): 305-308. |
[45] | LIN Y H, LAN J L, SHEN Z J, et al. High-temperature electrical transport behaviors in textured Ca3Co4O9-based polycrystalline ceramics. Applied Physics Letters, 2009, 94(7): 72107. |
[46] | SHIKANO M, FUNAHASHI R. Electrical and thermal properties of single-crystalline (Ca2CoO3)0.7CoO2 with a Ca3Co4O9 structure. Appl. Phys. Lett., 2003, 82(12): 1851. |
[47] | LIU Y H, LIN Y H, SHI Z, et al. Preparation of Ca3Co4O9 and improvement of its thermoelectric properties by spark plasma sintering. J. Am. Ceram. Soc., 2005, 88(5): 1337-1340. |
[48] | KENFAUI D, BONNEFONT G, CHATEIGNER D, et al. Ca3Co4O9 ceramics consolidated by SPS process: optimisation of mechanical and thermoelectric properties. Materials Research Bulletin, 2010, 45(9): 1240-1249. |
[49] | KWON OJ, JO W, KO KE, et al. Thermoelectric properties and texture evaluation of Ca3Co4O9 prepared by a cost-effective multisheet cofiring technique. J. Mater. Sci., 2011, 46(9): 2887-2894. |
[50] | LIU Y H, LIN Y H, JIANG L, et al. Thermoelectric properties of Bi3+ substituted Co-based misfit-layered oxides. J. Electroceram., 2008, 21(1-4): 748-751. |
[51] | LI S W, FUNAHASHI R, MATSUBARA I, et al. Synthesis and thermoelectric properties of the new oxide materials Ca3-xBixCo4O9+δ (0.0<x<0.75). Chem. Mater., 2000, 12(8): 2424-2427. |
[52] | SONG Y, SUN Q, ZHAO L R, et al. Synthesis and thermoelectric power factor of (Ca0.95Bi0.05)3Co4O9/Ag composites. Mater. Chem. Phys., 2009, 113(2/3): 645-649. |
[53] | SONG Y, NAN C W. High temperature transport properties of Ag-added (Ca0.975La0.025)3Co4O9 ceramics. Physica B, 2011, 406(14): 2919-2923. |
[54] | XU J, WEI C P, JIA K. Thermoelectric performance of textured Ca3-xYbxCo4O9-δ ceramics. J. Alloys. Compd., 2010, 500(2): 227-230. |
[55] | NONG N V, LIU C J, OHTAKI M. High-temperature thermoelectric properties of late rare earth-doped Ca3Co4O9+δ. J. Alloys Compd., 2011, 509(3): 977-981. |
[56] | FUJISHIRO Y, MIYATA M, AWANO M, et al. Characterization of thermoelectric metal oxide elements prepared by the pulse electric-current sintering method. J. Am. Ceram. Soc., 2004, 87(10): 1890-1894. |
[57] | LIU P S, CHEN G, CUI Y, et al. High temperature electrical conductivity and thermoelectric power of NaxCoO2. Solid State Ionics, 2008, 179(39): 2308-2312. |
[58] | PARK K, KO K Y, KIM J G, et al. Microstructure and high- temperature thermoelectric properties of CuO and NiO co-substituted NaCo2O4. Mater. Sci. Eng. B, 2006, 129(1/2/3): 200-206. |
[59] | SEETAWAN T, AMORNKITBAMRUNG V, BURINPRAKHON T, et al. Thermoelectric power and electrical resistivity of Ag-doped Na1.5Co2O4. J. Alloys Compd., 2006, 407(1/2): 314-317. |
[60] | TSAI P H, ASSADI M, ZHANG T S, et al. Immobilization of Na ions for substantial power factor enhancement: site-specific defect engineering in Na0.8CoO2. J. Phys. Chem. C, 2012, 116(6): 4324-4329. |
[61] | TSAI P H, NORBY T, TAN T T, et al. Correlation of oxygen vacancy concentration and thermoelectric properties in Na0.73CoO2-δ. Appl. Phys. Lett., 2010, 96(14): 141905. |
[62] | WANG L, WANG M, ZHAO D L. Thermoelectric properties of c-axis oriented Ni-substituted NaCoO2 thermoelectric oxide by the citric acid complex method. J. Alloys Compd., 2009, 471(1/2): 519-523. |
[63] | TSAI P H, ZHANG T S, DONELSON R, et al. Power factor enhancement in Zn-doped Na 0.8CoO2. J. Alloys. Compd., 2011, 509(16): 5183-5186. |
[64] | LI N, JIANG Y, LI G H, et al. Self-ignition route to Ag-doped Na1.7Co2O4 and its thermoelectric properties. J. Alloys Compd., 2009, 467(1/2): 444-449. |
[65] | YASUKAWA M, SHIGA Y, KONO T. Electrical conduction and thermoelectric properties of perovskite-type BaBi1-xSbxO3. Solid State Communications, 2012, 152(11): 964-967. |
[66] | SUZUKI T, SAKAI H, TAGUCHI Y, et al. Thermoelectric properties of electron-doped SrMnO3 single crystals with perovskite structure. J. Electronic Materials, 2012, 41(6): 1559-1563. |
[67] | LIU J, WANG C L, PENG H, et al. Thermoelectric properties of Dy-doped SrTiO3 ceramics. J. Electronic Materials, 2012, 41(11): 3073-3076. |
[68] | FUKUYADO J, NARIKIYO K, AKAKI M, et al. Thermoelectric properties of the electron-doped perovskites Sr1-xCaxTi1-yNbyO3. Phys. Rev. B, 2012, 85(7): 75112. |
[69] | HUANG L T, NONG N V, HAN L, et al. High-temperature thermoelectric properties of Ca0.9Y0.1Mn1-xFexO3(0≤x≤0.25). J. Mater. Sci., 2012, 48(7): 2817-2822. |
[70] | MENG X W, HAO S, LI J L, et al. Preparation of Ca0.8Sm0.2MnO3 powders and effects of calcination temperature on structure and electrical property. Powder Technology, 2012, 224: 96-100. |
[71] | MUTA H, KUROSAKI K, YAMANAKA S. Thermoelectric properties of rare earth doped SrTiO3. J. Alloys Compd., 2003, 350(1/2): 292-295. |
[72] | ZHANG L H, TOSHO T, OKINAKA N, et al. Thermoelectric properties of combustion-synthesized lanthanum-doped strontium titanate. Materials Transactions, 2007, 48(5): 1079-1083. |
[73] | OHTA S, NOMURA T, OHTA H, et al. High-temperature carrier transport and thermoelectric properties of heavily La- or Nb-doped SrTiO3 single crystals. J. Appl. Phys., 2005, 97(3): 34106. |
[74] | WANG Y F, LEE K H, HYUGA H, et al. Enhancement of thermoelectric performance in rare earth-doped Sr3Ti2O7 by symmetry restoration of TiO6 octahedra. J. Electroceram., 2010, 24(2): 76-82. |
[75] | LAN J L, LIN Y H, MEI A, et al. High-temperature electric properties of polycrystalline La-doped CaMnO3 Ceramics. J. Mater. Sci. Technol., 2009, 25(4): 535-538. |
[76] | POPULOH S, TROTTMANN M, AGUIRE M H, et al. Nanostructured Nb-substituted CaMnO3 n-type thermoelectric material prepared in a continuous process by ultrasonic spray combustion. J. Mater. Res., 2011, 26(15): 1947-1952. |
[77] | OHTAKI M, TSUBOTA T, EGUCHI K, et al. High-temperature thermoelectric properties of (Zn1-xAlx)O. J. Appl. Phys., 1996, 79(3): 1816-1818. |
[78] | YAMAGUCHI H, CHONAN Y, ODA M, et al. Thermoelectric properties of ZnO ceramics co-doped with Al and transition metals. J. Electron. Mater., 2011, 40(5): 723-727. |
[79] | CHENG H, XU X J, HNG H H, et al. Characterization of Al-doped ZnO thermoelectric materials prepared by RF plasma powder processing and hot press sintering. Ceram. Int., 2009, 35(8): 3067-3072. |
[80] | JOOD P, MEHTA R J, ZHANG Y L, et al. Al-doped zinc oxide nanocomposites with enhanced thermoelectric properties. Nano Lett., 2011, 11(10): 4337-4342. |
[81] | LIU Y, LIN Y H, LAN J L, et al. Thermoelectric Performance of Zn and Nd Co-doped In2O3 ceramics. J. Electronic Materials, 2011, 40(5): 1083-1086. |
[82] | LIU Y, LIN Y H, XU W, et al. High-temperature transport property of In2-xCexO3(0≤x≤0.10) fine grained ceramics. J. Am. Ceram. Soc., 2012, 95(8): 2568-2572. |
[83] | MASUDA Y, OHTA M, SEO W S, et al. Structure and thermoelectric transport properties of isoelectronically substituted (ZnO)5In2O3. J Solid State Chemistry, 2000, 150(1): 221-227. |
[84] | ISOBE S, TANI T, MASUDA Y, et al. Thermoelectric performance of yttrium-substituted (ZnO)5In2O3 improved through ceramic texturing. Jpn. J. Appl. Phys., 2002, 41: 731-732. |
[85] | LI J, SUI J H, BARRETEAU C, et al. Thermoelectric properties of Mg doped p-type BiCuSeO oxyselenides. J. Alloys Comp., 2013, 551: 649-653. |
[86] | LIU Y, ZHAO L D, LIU Y C, et al. Remarkable enhancement in thermoelectric performance of BiCuSeO by Cu deficiencies. J. Am. Chem. Soc., 2011, 133(50): 20112-20115. |
[87] | RULEOVA P, DRASAR C, LOSTAK P, et al. Thermoelectric properties of Bi2O2Se. Materials Chemistry and Physics, 2010, 119(1/2): 299-302. |
[88] | SANG H Y, LI J F. Thermoelectric properties of AgSbO3 with defect pyrochlore structure. J. Alloys Compcompd., 2010, 493(1/2): 678-682. |
[89] | LI F, LI J F. Effect of Ni substitution on electrical and thermoelectric properties of LaCoO3 ceramics. Ceram. Int., 2011, 37(1): 105-110. |
[90] | YANAGIYA S I, NONG N V, XU J X, et al. The effect of (Ag, Ni, Zn)-addition on the thermoelectric properties of copper aluminate. Materials, 2010, 3(1): 318-328. |
[1] | 郭天民, 董江波, 陈正鹏, 饶睦敏, 李明飞, 李田, 凌意瀚. 中温固体氧化物燃料电池的高熵双钙钛矿阴极材料: 兼容性与活性研究[J]. 无机材料学报, 2023, 38(6): 693-700. |
[2] | 丁玲, 蒋瑞, 唐子龙, 杨运琼. MXene材料的纳米工程及其作为超级电容器电极材料的研究进展[J]. 无机材料学报, 2023, 38(6): 619-633. |
[3] | 孙强强, 陈子璇, 杨子玥, 王毅梦, 曹宝月. 金属镍铜负载钒氧化物的高效电解产氢性能[J]. 无机材料学报, 2023, 38(6): 647-655. |
[4] | 汪波, 余健, 李存成, 聂晓蕾, 朱婉婷, 魏平, 赵文俞, 张清杰. Gd/Bi0.5Sb1.5Te3热电磁梯度复合材料的服役稳定性[J]. 无机材料学报, 2023, 38(6): 663-670. |
[5] | 杨卓, 卢勇, 赵庆, 陈军. X射线衍射Rietveld精修及其在锂离子电池正极材料中的应用[J]. 无机材料学报, 2023, 38(6): 589-605. |
[6] | 陈强, 白书欣, 叶益聪. 热管理用高导热碳化硅陶瓷基复合材料研究进展[J]. 无机材料学报, 2023, 38(6): 634-646. |
[7] | 林俊良, 王占杰. 铁电超晶格的研究进展[J]. 无机材料学报, 2023, 38(6): 606-618. |
[8] | 牛嘉雪, 孙思, 柳鹏飞, 张晓东, 穆晓宇. 铜基纳米酶的特性及其生物医学应用[J]. 无机材料学报, 2023, 38(5): 489-502. |
[9] | 苑景坤, 熊书锋, 陈张伟. 聚合物前驱体转化陶瓷增材制造技术研究趋势与挑战[J]. 无机材料学报, 2023, 38(5): 477-488. |
[10] | 贺丹琪, 魏明旭, 刘蕤之, 汤志鑫, 翟鹏程, 赵文俞. 一步法制备重费米子YbAl3热电材料及其性能提升[J]. 无机材料学报, 2023, 38(5): 577-582. |
[11] | 陈鑫力, 李岩, 王伟胜, 石智文, 竺立强. 明胶/羧化壳聚糖栅控氧化物神经形态晶体管[J]. 无机材料学报, 2023, 38(4): 421-428. |
[12] | 杜剑宇, 葛琛. 光电人工突触研究进展[J]. 无机材料学报, 2023, 38(4): 378-386. |
[13] | 杨洋, 崔航源, 祝影, 万昌锦, 万青. 柔性神经形态晶体管研究进展[J]. 无机材料学报, 2023, 38(4): 367-377. |
[14] | 李彦冉, 谢叮咚, 蒋杰. 离子氧化物晶体管阵列多级痛觉敏化仿生研究[J]. 无机材料学报, 2023, 38(4): 429-436. |
[15] | 游钧淇, 李策, 杨栋梁, 孙林锋. 氧化物双介质层忆阻器的设计及应用[J]. 无机材料学报, 2023, 38(4): 387-398. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||