[1] Xu G H, Zheng C, Zhang Q, et al. Binder-free activated carbon/carbon nanotube paper electrodes for use in supercapacitors. Nano Research, 2011, 4(9): 870–881.[2] Hu L, Pasta M, Mantia F L, et al. Stretchable, porous, and conductive energy textiles. Nano Letters, 2010, 10(2): 708–714.[3] Xian Q L, Li J. Preparation and electrochemical capacitance of α-Ni(OH)2 synthesized by microwave-assisted hydrothermal method. Journal of Inorganic Materials, 2010, 25(12): 1268–1272.[4] Xue T, Wang X, Lee J-M. Dual-template synthesis of Co(OH)2 with mesoporous nanowire structure and its application in supercapacitor. Journal of Power Sources, 2012, 201(5): 382–386.[5] Deng M G, Zhang Z A, Hu Y D, et al. Study on carbon nanotubes/manganese dioxide composite electrode materials for supercapacitors. Journal of the Chinese Ceramic Society, 2004, 32(4): 411–415.[6] Kaempgen M, Chan C K, Ma J, et al. Printable thin film supercapacitors using single-Walled carbon nanotubes. Nano Letters, 2009, 9(5): 1872–1876.[7] Nyholm L, Nystr?m G, Mihranyan A, et al. Toward flexible polymer and paper-based energy storage devices. Advanced Materials, 2011, 23(33): 3751–3769.[8] Ahn H J, Kim W B, Seong T Y. Co(OH)2-combined carbon-nanotube array electrodes for high-performance micro-electr ochemical capacitors. Electrochemistry Communications, 2008, 10(9): 1284–1287.[9] Kang Y J, Kim B, Chung H, et al. Fabrication and characterization of flexible and high capacitance supercapacitors based on MnO2/ CNT/papers. Synthetic Metals, 2010, 160(23/24): 2510–2514.[10] Qiu J, Zheng H Q. Research progress on preparation and performance of buckypaper/polymer composites. Materials Review, 2011, 25(9): 1–5.[11] Wang Z, Liang Z, Wang B, et al. Processing and property investigation of single-walled carbon nanotube (SWNT) buckypaper/epoxy resin matrix nanocomposites. Composites Part A: Applied Science and Manufacturing, 2004, 35(10): 1225–1232.[12] Potschke P, Zschoerper N P, Moller B P, et al. Plasma functionalization of multiwalled carbon nanotube bucky papers and the effect on properties of melt-mixed composites with polycarbonate. Macromolecular Rapid Communications, 2009, 30(21): 1828–1833.[13] Liu J, Sun J, Gao L. A promising way to enhance the electrochemical behavior of flexible single-walled carbon nanotube/polyaniline composite films. The Journal of Physical Chemistry C, 2010, 114(46): 19614–19620.[14] Chou S L, Wang J Z, Chew S Y, et al. Electrodeposition of MnO2 nanowires on carbon nanotube paper as free-standing flexible electrode for supercapacitors. Electrochemistry Communications, 2008, 10(11): 1724–1727.[15] Li X, Wei B. Facile synthesis and super capacitive behavior of SWNT/MnO2 hybrid films. Nano Energy, 2012, 1(3): 479–487.[16] Li M, Xu S H, Liu T, et al. Electrochemically-deposited nanostructured Co(OH)2 ?akes on three-dimensional ordered nickel/ silicon microchannel plates for miniature supercapacitors. Journal of Materials Chemistry A, 2013, 1: 532–540.[17] Yuan C Z, Yang L, Hou L R, et al. Synthesis and supercapacitance of flower-like Co(OH)2 hierarchical superstructures self-assembled by mesoporous nanobelts. Journal of Solid State Electrochemistry, 2012, 16(4): 1519–1525.[18] Kong L B, Lang J W, Liu M, et al. Facile approach to prepare loose-packed cobalt hydroxide nano-?akes materials for electrochemical capacitors. Journal of Power Sources, 2009, 194(2): 1194–1201.[19] Zhao T, Jiang H, Ma J. Surfactant-assisted electrochemical deposition of α-cobalt hydroxide for supercapacitors. Journal of Power Sources, 2011, 196(2): 860–864.[20] Yuan C Z, Hou L R, Shen L F, et al. A novel method to synthesize whisker-like Co(OH)2 and its electrochemical properties as an electrochemical capacitor electrode. Electrochimica Acta, 2010, 56 (1): 115–121.[21] Chen S, Zhu J W, Wang X. One-step synthesis of graphene cobalt hydroxide nanocomposites and their electrochemical properties. The Journal of Physical Chemistry C, 2010, 114(27): 11829–11834.[22] Xu C J, Li B H, Du H D, et al. Supercapacitive studys on amor- phous MnO2 in mild solutions. Journal of Applied Electrochemistry, 2008, 184(2): 691–694.[23] Hu B, Chen S F, Liu S J, et al. Controllable synthesis of zinc-substituted α- and β-nickel hydroxide nanostructures and their collective intrinsic properties. Chemistry–A European Journal, 2008, 14(29): 8928–8938.[24] Wang H, Casalongue H S, Liang Y, et al. Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. Journal of the American Chemical Society, 2010, 132 (21): 7472–7477.[25] Richardson T J, Rubin M D. Liquid phase deposition of electrochromic thin films. Electrochimica Acta, 2001, 46(13/14): 2119–2123.[26] Deki S, Hosokawa A, Béléké A B, et al. α-Ni(OH)2 thin films fabricated by liquid phase deposition method. Thin Solid Films, 2009, 517(5): 1546–1554.[27] Li Q Y, Wang R N, Nie Z R, et al. Preparation of three-dimensional ?ower-like Ni(OH)2 nanostructures by a facile template-free solution process. Journal of Alloys and Compounds, 2010, 496(1/2): 300–305.[28] Tompsett G A, Conner W C, Yngvesson K S. Microwave synthesis of nanoporous materials. ChemPhysChem, 2006, 7(2): 296–319.[29] Zhong L S, Hu J S, Liang H P, et al. Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment. Advanced Materials, 2006, 18(18): 2426–2431.[30] Liang Y Y, Li H L, Zhang X G. A novel asymmetric capacitor based on Co(OH)2/USY composite and activated carbon electrodes. Materials Science and Engineering A, 2008, 73(1/2): 317–322.[31] Wang H T, Zhang L, Tan X H, et al. Supercapacitive properties of hydrothermally synthesized Co3O4 nanostructures. The Journal of Physical Chemistry C, 2011, 115(35): 17599–17605. |