无机材料学报 ›› 2013, Vol. 28 ›› Issue (1): 29-39.DOI: 10.3724/SP.J.1077.2013.12241 CSTR: 32189.14.SP.J.1077.2013.12241
吴成铁, 常 江
收稿日期:
2012-04-18
修回日期:
2012-05-28
出版日期:
2013-01-10
网络出版日期:
2012-12-20
基金资助:
WU Cheng-Tie, CHANG Jiang
Received:
2012-04-18
Revised:
2012-05-28
Published:
2013-01-10
Online:
2012-12-20
Supported by:
摘要:
近年来, 硅酸盐生物活性陶瓷越来越受到研究人员的重视, 其主要原因在于硅酸盐生物陶瓷能够通过释放硅(Si)离子等生物活性离子, 显著地促进骨组织细胞的增殖、分化及骨组织修复. 硅酸盐生物活性陶瓷有望作为新的陶瓷体系广泛应用于骨缺损修复和再生。本文将结合本课题组在过去十年的研究, 重点介绍目前硅酸盐生物活性陶瓷用于骨组织修复及再生的研究进展。同时, 通过与传统磷酸钙类生物陶瓷进行比较, 对硅酸盐生物活性陶瓷的优缺点进行分析和归纳, 最后对硅酸盐陶瓷作为新的生物陶瓷体系用于骨组织修复的前景做了展望。
中图分类号:
吴成铁, 常 江. 硅酸盐生物活性陶瓷用于骨组织修复及再生的研究[J]. 无机材料学报, 2013, 28(1): 29-39.
WU Cheng-Tie, CHANG Jiang. Silicate Bioceramics for Bone Tissue Regeneration[J]. Journal of Inorganic Materials, 2013, 28(1): 29-39.
System | Names | Compositions | Synthesis methods | References | |
---|---|---|---|---|---|
Binary oxides | CaO-SiO2 | Wollastonite Dicalcium silicate Tricalcium silicate | CaSiO3 Ca2SiO4 Ca3SiO5 | Eutectic Precipitation Sol-Gel | [8,14,18-24] [25-30] [31-35] |
MgO-SiO2 | Dimagnesium silicate Magnesium silicate | Mg2SiO4 MgSiO3 | Sol-Gel Precipitation | [36-43] [44] | |
ZnO-SiO2 | Zinc silicate | Zn2SiO4 | Solid reaction | [45] | |
SrO-SiO2 | Strontium silicate | SrSiO3 | Precipitation | [46] | |
Ternary oxides | MgO-CaO-SiO2 | Akermanite Bredigite Diopside Merwinite Monticellite | Ca2MgSi2O7 Ca7MgSi4O16 CaMgSi2O6 Ca3MgSi2O8 CaMgSiO4 | Sol-Gel Sol-Gel Precipitation Sol-Gel Sol-Gel | [47-57] [58-61] [51,62-65] [66-67] [68] |
ZnO-CaO-SiO2 | Hardystonite | Ca2ZnSi2O7 ZnxCaSiO3+x | Sol-Gel Sol-Gel | [69-71] [72] | |
SrO-CaO-SiO2 | - | (Sr,Ca)SiO3 | Precipitation | [73-74] | |
TiO2-CaO-SiO2 | Sphene | CaTiSiO5 | Sol-Gel | [75-78] | |
ZrO2-CaO-SiO2 | Baghdadite | Ca3ZrSi2O9 | Sol-Gel | [79] | |
P2O5-CaO-SiO2 | Silicocarnotite | Ca5P2SiO12 | Sol-Gel | [80] | |
SrO-MgO-SiO2 | Strontium-akermanite | Sr2MgSi2O7 | Solid reaction | ||
SrO-ZnO-SiO2 | Strontium- hardystonite | Sr2ZnSi2O7 | Solid reaction | ||
Na2O-CaO-SiO2 | - | CaNa2SiO4 Ca2Na2Si3O9 | Sol-Gel Sol-Gel | [81] [82] | |
Multicompositions | SrO-ZnO-CaO-SiO2 | - | (Sr,Ca)2ZnSi2O7 | Sol-Gel | [83] |
Table 1 Silicate ceramics and preparation methods
System | Names | Compositions | Synthesis methods | References | |
---|---|---|---|---|---|
Binary oxides | CaO-SiO2 | Wollastonite Dicalcium silicate Tricalcium silicate | CaSiO3 Ca2SiO4 Ca3SiO5 | Eutectic Precipitation Sol-Gel | [8,14,18-24] [25-30] [31-35] |
MgO-SiO2 | Dimagnesium silicate Magnesium silicate | Mg2SiO4 MgSiO3 | Sol-Gel Precipitation | [36-43] [44] | |
ZnO-SiO2 | Zinc silicate | Zn2SiO4 | Solid reaction | [45] | |
SrO-SiO2 | Strontium silicate | SrSiO3 | Precipitation | [46] | |
Ternary oxides | MgO-CaO-SiO2 | Akermanite Bredigite Diopside Merwinite Monticellite | Ca2MgSi2O7 Ca7MgSi4O16 CaMgSi2O6 Ca3MgSi2O8 CaMgSiO4 | Sol-Gel Sol-Gel Precipitation Sol-Gel Sol-Gel | [47-57] [58-61] [51,62-65] [66-67] [68] |
ZnO-CaO-SiO2 | Hardystonite | Ca2ZnSi2O7 ZnxCaSiO3+x | Sol-Gel Sol-Gel | [69-71] [72] | |
SrO-CaO-SiO2 | - | (Sr,Ca)SiO3 | Precipitation | [73-74] | |
TiO2-CaO-SiO2 | Sphene | CaTiSiO5 | Sol-Gel | [75-78] | |
ZrO2-CaO-SiO2 | Baghdadite | Ca3ZrSi2O9 | Sol-Gel | [79] | |
P2O5-CaO-SiO2 | Silicocarnotite | Ca5P2SiO12 | Sol-Gel | [80] | |
SrO-MgO-SiO2 | Strontium-akermanite | Sr2MgSi2O7 | Solid reaction | ||
SrO-ZnO-SiO2 | Strontium- hardystonite | Sr2ZnSi2O7 | Solid reaction | ||
Na2O-CaO-SiO2 | - | CaNa2SiO4 Ca2Na2Si3O9 | Sol-Gel Sol-Gel | [81] [82] | |
Multicompositions | SrO-ZnO-CaO-SiO2 | - | (Sr,Ca)2ZnSi2O7 | Sol-Gel | [83] |
Names | Compositions | Bending strength /MPa | Fracture toughness /(MPa·m1/2) | Elastic modulus /GPa | References |
---|---|---|---|---|---|
Human cortical bone | - | 50-150 | 2-12 | 7-30 | [3] |
Hydroxyapatite | Ca10(PO4)6(OH)2 | 80-195 | 0.7-1.30 | 75-103 | [84] |
Wollastonite Dicalcium silicate Tricalcium silicate Calcium-Silicate/Zirconia | CaSiO3 Ca2SiO4 Ca3SiO5 CaSiO3/ZrO2 | 95 294* 26-97 293* 93.4 395* | - 2.0* 1.1-1.8 3.0* 1.93 4.08* | - 46.5* 10-40 - 36.7 81* | [85] [86] [87] [30] [32] [88] |
Dimagnesium silicate Magnesium silicate | Mg2SiO4 MgSiO3 | 203 32 | 2.4 - | - 8.5 | [36] [44] |
Zinc silicate | Zn2SiO4 | 91 | - | 37.5 | [45] |
Akermanite Bredigite Diopside Merwinite Monticellite | Ca2MgSi2O7 Ca7MgSi4O16 CaMgSi2O6 Ca3MgSi2O8 CaMgSiO4 | 176 156 300 151 159 | 1.83 1.57 3.50 1.72 1.63 | 42 43 - 31 51 | [48] [58] [63] [66] [68] |
Hardystonite | Ca2ZnSi2O7 | 136 | 1.37 | 37 | [69] |
Silicocarnotite | Ca5P2SiO12 | 65 | - | 80 | [80] |
Table 2 The mechanical properties of silicate bioceramics
Names | Compositions | Bending strength /MPa | Fracture toughness /(MPa·m1/2) | Elastic modulus /GPa | References |
---|---|---|---|---|---|
Human cortical bone | - | 50-150 | 2-12 | 7-30 | [3] |
Hydroxyapatite | Ca10(PO4)6(OH)2 | 80-195 | 0.7-1.30 | 75-103 | [84] |
Wollastonite Dicalcium silicate Tricalcium silicate Calcium-Silicate/Zirconia | CaSiO3 Ca2SiO4 Ca3SiO5 CaSiO3/ZrO2 | 95 294* 26-97 293* 93.4 395* | - 2.0* 1.1-1.8 3.0* 1.93 4.08* | - 46.5* 10-40 - 36.7 81* | [85] [86] [87] [30] [32] [88] |
Dimagnesium silicate Magnesium silicate | Mg2SiO4 MgSiO3 | 203 32 | 2.4 - | - 8.5 | [36] [44] |
Zinc silicate | Zn2SiO4 | 91 | - | 37.5 | [45] |
Akermanite Bredigite Diopside Merwinite Monticellite | Ca2MgSi2O7 Ca7MgSi4O16 CaMgSi2O6 Ca3MgSi2O8 CaMgSiO4 | 176 156 300 151 159 | 1.83 1.57 3.50 1.72 1.63 | 42 43 - 31 51 | [48] [58] [63] [66] [68] |
Hardystonite | Ca2ZnSi2O7 | 136 | 1.37 | 37 | [69] |
Silicocarnotite | Ca5P2SiO12 | 65 | - | 80 | [80] |
图1 纳米磷灰石在镁黄长石(a)和白硅钙石陶瓷(b)表面矿化的SEM形貌 表3 硅酸盐生物陶瓷的磷灰石矿化能力
Fig. 1 SEM images of apatite mineralization on the surface of akermanite and bredigite bioceramics
Names | Compositions | Mineralization ability |
---|---|---|
Wollastonite Dicalcium Silicate Tricalcium Silicate Bredigite | CaSiO3 Ca2SiO4 Ca3SiO5 Ca7MgSi4O16 | ★★★★★ |
Akermanite Merwinite Silicocarnotite | Ca2MgSi2O7 Ca3MgSi2O8 Ca5P2SiO12 | ★★★★ |
Diopside Monticellite Baghdadite | CaMgSi2O6 CaMgSiO4 Ca3ZrSi2O9 (Sr,Ca)2ZnSi2O7 | ★★★ |
Dimagnesium Silicate Magnesium Silicate Zinc Silicate Hardystonite Sphene Strontium-akermanite Strontium-hardystonite | Mg2SiO4 MgSiO3 Zn2SiO4 Ca2ZnSi2O7 CaTiSiO5 Sr2MgSi2O7 Sr2ZnSi2O7 | ★ |
Table 3 Apatite-mineralization ability of silicate bioceramics
Names | Compositions | Mineralization ability |
---|---|---|
Wollastonite Dicalcium Silicate Tricalcium Silicate Bredigite | CaSiO3 Ca2SiO4 Ca3SiO5 Ca7MgSi4O16 | ★★★★★ |
Akermanite Merwinite Silicocarnotite | Ca2MgSi2O7 Ca3MgSi2O8 Ca5P2SiO12 | ★★★★ |
Diopside Monticellite Baghdadite | CaMgSi2O6 CaMgSiO4 Ca3ZrSi2O9 (Sr,Ca)2ZnSi2O7 | ★★★ |
Dimagnesium Silicate Magnesium Silicate Zinc Silicate Hardystonite Sphene Strontium-akermanite Strontium-hardystonite | Mg2SiO4 MgSiO3 Zn2SiO4 Ca2ZnSi2O7 CaTiSiO5 Sr2MgSi2O7 Sr2ZnSi2O7 | ★ |
Names | Compositions | Stimulating proliferation | Stimulating differentiation | References |
---|---|---|---|---|
Wollastonite Dicalcium silicate Tricalcium silicate | CaSiO3 Ca2SiO4 Ca3SiO5 | OB L929 L929, DPC | - - DPC | [73] [28] [31,34-35] |
Magnesium silicate | MgSiO3 | L929 | - | [44] |
Strontium silicate | SrSiO3 | BMSCs | - | [46] |
Akermanite Bredigite Diopside | Ca2MgSi2O7 Ca7MgSi4O16 CaMgSi2O6 | L929, OB, ADC, PDLCs L929, OB OB | OB, ADC, PDLCs - - | [49,51,55-56] [51,58] [51] |
Hardystonite | Ca2ZnSi2O7 | BMSCs | BMSCs | [71] |
- | (Sr,Ca)SiO3 | OB | - | [73] |
Sphene | CaTiSiO5 | OB | - | [78] |
Baghdadite | Ca3ZrSi2O9 | OB | - | [79] |
Strontium-akermanite | Sr2MgSi2O7 | BMSCs | BMSCs | |
Strontium-hardystonite | Sr2ZnSi2O7 | BMSCs | BMSCs |
Table 4 The stimulation of different types of tissue cells by ionic products from silicate bioceramics
Names | Compositions | Stimulating proliferation | Stimulating differentiation | References |
---|---|---|---|---|
Wollastonite Dicalcium silicate Tricalcium silicate | CaSiO3 Ca2SiO4 Ca3SiO5 | OB L929 L929, DPC | - - DPC | [73] [28] [31,34-35] |
Magnesium silicate | MgSiO3 | L929 | - | [44] |
Strontium silicate | SrSiO3 | BMSCs | - | [46] |
Akermanite Bredigite Diopside | Ca2MgSi2O7 Ca7MgSi4O16 CaMgSi2O6 | L929, OB, ADC, PDLCs L929, OB OB | OB, ADC, PDLCs - - | [49,51,55-56] [51,58] [51] |
Hardystonite | Ca2ZnSi2O7 | BMSCs | BMSCs | [71] |
- | (Sr,Ca)SiO3 | OB | - | [73] |
Sphene | CaTiSiO5 | OB | - | [78] |
Baghdadite | Ca3ZrSi2O9 | OB | - | [79] |
Strontium-akermanite | Sr2MgSi2O7 | BMSCs | BMSCs | |
Strontium-hardystonite | Sr2ZnSi2O7 | BMSCs | BMSCs |
[1] | Hench L L, Polak J M. Third-generation biomedical materials. Science, 2002, 295(5557): 1014-1017. |
[2] | Hench L L. Bioceramics: from concept to clinic. J. Am. Ceram. Soc., 1991,74(7): 1487-1510. |
[3] | Hench L L. Biomaterials: a forecast for the future. Biomaterials, 1998, 19(16): 1419-1423. |
[4] | Hench L L, Splinter R J, Greenlee T K. Bonding mechanisms at the interface of ceramic prosthetic materials. J. Biomed. Mater. Res., 1971, 5(6): 117-141. |
[5] | Hench L L, Wilson J. An Introduction to Bioceramics. Singapore: World Scientific, 1993. |
[6] | Ni S, Lin K, Chang J, et al. Beta-CaSiO3/beta-Ca3(PO4)2 composite materials for hard tissue repair: in vitro studies. J. Biomed. Mater. Res. A, 2008, 85(1): 72-82. |
[7] | Lu J X, Descamps M, Dejou J, et al. The biodegradation mechanism of calcium phosphate biomaterials in bone. J. Biomed. Mater. Res., 2002, 63(4): 408-412. |
[8] | Xu S, Lin K, Wang Z, et al. Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics. Biomaterials, 2008, 29(17): 2588-2596. |
[9] | Hench L L, Greenlee T K. 1970: Us Army Research and Development Command. Contract NO Data, 17-70-C-0001. |
[10] | Hench L L, Thompson I. Twenty-first century challenges for biomaterials. J. R. Soc. Interface, 2010, 7(Suppl 4): S379-S391. |
[11] | Xia W, Chang J. Well-ordered mesoporous bioactive glasses (MBG): a promising bioactive drug delivery system. J. Control. Release, 2006, 110(3): 522-530. |
[12] | Xia W, Chang J. Preparation and the phase transformation behavior of amorphous mesoporous calcium silicate. Micropor. Mesopor. Mater., 2008, 108(1/3): 345-351. |
[13] | Wu C, Fan W, Gelinsky M, et al. Bioactive SrO-SiO2 glass with well-ordered mesopores: characterization, physiochemistry and biological properties. Acta Biomater., 2011, 7(4): 1797-1806. |
[14] | De Aza P N, Guitian F, Deaza S. Bioactivity of wollastonite ceramics: in vitro evaluation. Scrip. Metal. Et. Mater., 1994, 31(8): 1001-1005. |
[15] | Mertz W. The essential trace elements. Science, 1981, 213(4514): 1332-1338. |
[16] | Carlisle E M. Silicon: a possible factor in bone calcification. Science, 1970,167(3916): 279-280. |
[17] | Schwarz K, Milne D B. Growth-promoting effects of silicon in rats. Nature, 1972, 239(5371): 333-334. |
[18] | De Aza P N, Luklinska Z B, Martinez A, et al. Morphological and structural study of pseudowollastonite implants in bone. J. Microsc., 2000, 197(1): 60-67. |
[19] | De Aza P N, Guitian F, De Aza S. Bioeutectic: a new ceramic material for human bone replacement. Biomaterials, 1997, 18(19): 1285-1291. |
[20] | De Aza P N, Guitian F, De Aza S, et al. Analytical control of wollastonite for biomedical applications by use of atomic absorption spectrometry and inductively coupled plasma atomic emission spectrometry. Analyst, 1998, 123(4): 681-685. |
[21] | De Aza P N, Luklinska Z B, Anseau M R, et al. Bioactivity of pseudowollastonite in human saliva. J. Dent., 1999, 27(2): 107-113. |
[22] | De Aza P N, Luklinska Z B, Anseau M R, et al. Reactivity of a wollastonite-tricalcium phosphate Bioeutectic ceramic in human parotid saliva. Biomaterials, 2000, 21(17): 1735-1741. |
[23] | De Aza P N, Luklinska Z B, Anseau M R, et al. Transmission electron microscopy of the interface between bone and pseudowollastonite implant. J. Microsc., 2001, 201(Pt1): 33-43. |
[24] | Ni S, Chang J, Chou L. A novel bioactive porous CaSiO3 scaffold for bone tissue engineering. J. Biomed. Mater. Res. A, 2006, 76(1): 196-205. |
[25] | Gou Z R, Chang J, Gao J H, et al. In vitro bioactivity and dissolution of Ca2(SiO3)(OH)2 and beta-Ca2SiO4 fibers. J. Euro. Ceram. Soc., 2004, 24(13): 3491-3497. |
[26] | Gou Z G, Chang J. Synthesis and in vitro bioactivity of dicalcium silicate powders. J. Euro. Ceram. Soc., 2004, 24(1): 93-99. |
[27] | Gou Z R, Chang J, Zhai W Y. Preparation and characterization of novel bioactive dicalcium silicate ceramics. J. Euro. Ceram. Soc., 2005, 25(9): 1507-1514. |
[28] | Gou Z R, Chang J, Zhai W Y, et al. Study on the self-setting property and the in vitro bioactivity of beta-Ca2SiO4. J. Biomed. Mater. Res. B-App. Biomater., 2005, 73B(2): 244-251. |
[29] | Huang X H, Chang J. Low-temperature synthesis of nanocrystalline beta-dicalcium silicate with high specific surface area. J. Nanoparticle Res., 2007, 9(6): 1195-1200. |
[30] | Zhong H B, Wang L J, Fan Y C, et al. Mechanical properties and bioactivity of beta-Ca2SiO4 ceramics synthesized by spark plasma sintering. Ceram. Int., 2011,37(7): 2459-2465. |
[31] | Zhao W, Wang J, Zhai W, et al. The self-setting properties and in vitro bioactivity of tricalcium silicate. Biomaterials, 2005, 26(31): 6113-6121. |
[32] | Zhao W, Chang J. Preparation and characterization of novel tricalcium silicate bioceramics. J. Biomed. Mater. Res. A, 2005, 73(1): 86-89. |
[33] | Zhao W, Chang J, Wang J, et al. In vitro bioactivity of novel tricalcium silicate ceramics. J. Mater. Sci. Mater. Med., 2007, 18(5): 917-923. |
[34] | Zhao W, Chang J, Zhai W. Self-setting properties and in vitro bioactivity of Ca3SiO5·CaSO4·1/2H2O composite cement. J. Biomed. Mater. Res. A, 2008, 85(2): 336-344. |
[35] | Peng W, Liu W, Zhai W, et al. Effect of tricalcium silicate on the proliferation and odontogenic differentiation of human dental pulp cells. J. Endod., 2011, 37(9): 1240-1246. |
[36] | Ni S Y, Chou L, Chang J. Preparation and characterization of forsterite (Mg2SiO4) bioceramics. Ceram. Int., 2007, 33(1): 83-88. |
[37] | Ni S, Chang J. In vitro degradation, bioactivity, and cytocompatibility of calcium silicate, dimagnesium silicate, and tricalcium phosphate bioceramics. J. Biomater. Appl., 2009, 24(2): 139-158. |
[38] | Ni S, Chang J, Chou L. In vitro studies of novel CaO-SiO2-MgO system composite bioceramics. J. Mater. Sci. Mater. Med., 2008, 19(1): 359-367. |
[39] | Kharaziha M, Fathi M H. Improvement of mechanical properties and biocompatibility of forsterite bioceramic addressed to bone tissue engineering materials. J. Mech. Behav. Biomed. Mater., 2010, 3(7): 530-537. |
[40] | Tavangarian F, Emadi R. Nanostructure effects on the bioactivity of forsterite bioceramic. Mater. Lett., 2011, 65(4): 740-743. |
[41] | Tavangarian F, Emadi R. Improving degradation rate and apatite formation ability of nanostructure forsterite. Ceram. Int., 2011, 37(7): 2275-2280. |
[42] | Tavangarian F, Emadi R. Synthesis and characterization of spinel forsterite nanocomposites. Ceram. Int., 2011, 37(7): 2543-2548. |
[43] | Tavangarian F, Emadi R. Effects of mechanical activation and chlorine ion on nanoparticle forsterite formation. Mater. Lett., 2011, 65(1): 126-129. |
[44] | Jin X G, Chang J A, Zhai W Y, et al. Preparation and characterization of clinoenstatite bioceramics. J. Am. Ceram. Soc., 2011, 94(1): 173-177. |
[45] | Zhang M, Zhai W, Chang J. Preparation and characterization of a novel willemite bioceramic. J. Mater. Sci. Mater. Med., 2010, 21(4): 1169-1173. |
[46] | Zhang M, Zhai W, Lin K, et al. Synthesis, in vitro hydroxyapatite forming ability, and cytocompatibility of strontium silicate powders. J. Biomed. Mater. Res. B Appl. Biomater., 2010, 93(1): 252-257. |
[47] | Wu C T, Chang J. Synthesis and apatite-formation ability of akermanite. Mater. Lett., 2004, 58(19): 2415-2417. |
[48] | Wu C, Chang J. A novel akermanite bioceramic: preparation and characteristics. J. Biomater. Appl., 2006, 21(2): 119-129. |
[49] | Wu C, Chang J, Ni S, et al. In vitro bioactivity of akermanite ceramics. J. Biomed. Mater. Res. A, 2006, 76(1): 73-80. |
[50] | Wu C, Chang J, Zhai W, et al. Porous akermanite scaffolds for bone tissue engineering: preparation, characterization, and in vitro studies. J. Biomed. Mater. Res. B Appl. Biomater., 2006, 78(1): 47-55. |
[51] | Wu C, Chang J. Degradation, bioactivity, and cytocompatibility of diopside, akermanite, and bredigite ceramics. J. Biomed. Mater. Res. B Appl. Biomater., 2007, 83(1): 153-160. |
[52] | Sun H, Wu C, Dai K, et al. Proliferation and osteoblastic differentiation of human bone marrow-derived stromal cells on akermanite- bioactive ceramics. Biomaterials, 2006, 27(33): 5651-5657. |
[53] | Huang Y, Jin X, Zhang X, et al. In vitro and in vivo evaluation of akermanite bioceramics for bone regeneration. Biomaterials, 2009, 30(28): 5041-5048. |
[54] | Liu Q, Cen L, Yin S, et al. A comparative study of proliferation and osteogenic differentiation of adipose-derived stem cells on akermanite and beta-TCP ceramics. Biomaterials, 2008, 29(36): 4792-4799. |
[55] | Gu H, Guo F, Zhou X, et al. The stimulation of osteogenic differentiation of human adipose-derived stem cells by ionic products from akermanite dissolution via activation of the ERK pathway. Biomaterials, 2011, 32(29): 7023-7033. |
[56] | Xia L, Zhang Z, Chen L, et al. Proliferation and osteogenic differentiation of human periodontal ligament cells on akermanite and beta-TCP bioceramics. Eur. Cell Mater., 2011, 22: 68-82. |
[57] | Zhai W, Lu H, Chen L, et al. Silicate bioceramics induce angiogenesis during bone regeneration. Acta Biomater., 2012, 8(1): 341-349. |
[58] | Wu C, Chang J, Wang J, et al. Preparation and characteristics of a calcium magnesium silicate (bredigite) bioactive ceramic. Biomaterials, 2005, 26(16): 2925-2931. |
[59] | Wu C, Chang J. Synthesis and in vitro bioactivity of bredigite powders. J. Biomater. Appl., 2007, 21(3): 251-263. |
[60] | Wu C, Chang J, Zhai W, et al. A novel bioactive porous bredigite (Ca7MgSi4O16) scaffold with biomimetic apatite layer for bone tissue engineering. J. Mater. Sci. Mater. Med., 2007, 18(5): 857-864. |
[61] | Huang X H, Chang J. Preparation of nanocrystalline bredigite powders with apatite-forming ability by a simple combustion method. Mater. Res. Bull., 2008, 43(6): 1615-1620. |
[62] | Miake Y, Yanagisawa T, Yajima Y, et al. High-resolution and analytical electron microscopic studies of new crystals induced by a bioactive ceramic (diopside). J. Dent. Res., 1995, 74(11): 1756-1763. |
[63] | Nonami T, Tsutsumi S. Study of diopside ceramics for biomaterials. J. Mater. Sci. Mater. Med., 1999, 10(8): 475-479. |
[64] | Wu C, Ramaswamy Y, Zreiqat H. Porous diopside (CaMgSi2O6) scaffold: a promising bioactive material for bone tissue engineering. Acta Biomater., 2010, 6(6): 2237-2245. |
[65] | Wu C, Zreiqat H. Porous bioactive diopside (CaMgSi2O6) ceramic microspheres for drug delivery. Acta Biomater., 2010, 6(3): 820-829. |
[66] | Ou J, Kang Y, Huang Z, et al. Preparation and in vitro bioactivity of novel merwinite ceramic. Biomed. Mater., 2008, 3(1): 015015. |
[67] | Hafezi-Ardakani M, Moztarzadeh F, Rabiee M, et al. Synthesis and characterization of nanocrystalline merwinite (Ca3Mg(SiO4)2) via Sol-Gel method. Ceram. Int., 2011, 37(1): 175-180. |
[68] | Chen X, Ou J, Kang Y, et al. Synthesis and characteristics of monticellite bioactive ceramic. J. Mater. Sci. Mater. Med., 2008, 19(3): 1257-1263. |
[69] | Wu C, Chang J, Zhai W. A novel hardystonite bioceramic: preparation and characteristics. Ceram. Int., 2005, 31(1): 27-31. |
[70] | Ramaswamy Y, Wu C, Zhou H, et al. Biological response of human bone cells to zinc-modified Ca-Si-based ceramics. Acta Biomater., 2008, 4(5): 1487-1497. |
[71] | Lu H, Kawazoe N, Tateishi T, et al. In vitro proliferation and osteogenic differentiation of human bone marrow-derived mesenchymal stem cells cultured with hardystonite (Ca2ZnSi2O7) and β-TCP ceramics. J. Biomater. Appl., 2010, 25(1): 39-56. |
[72] | Wu C, Ramaswamy Y, Chang J, et al. The effect of Zn contents on phase composition, chemical stability and cellular bioactivity in Zn-Ca-Si system ceramics. J. Biomed. Mater. Res. B: Appl. Biomater., 2008, 87(2): 346-353. |
[73] | Wu C, Ramaswamy Y, Kwik D, et al. The effect of strontium incorporation into CaSiO3 ceramics on their physical and biological properties. Biomaterials, 2007, 28(21): 3171-3181. |
[74] | Zhang W, Shen Y, Pan H, et al. Effects of strontium in modified biomaterials. Acta Biomater., 2011,7(2): 800-808. |
[75] | Wu C, Ramaswamy Y, Soeparto A, et al. Incorporation of titanium into calcium silicate improved their chemical stability and biological properties. J. Biomed. Mater. Res. A, 2008, 86(2): 402-410. |
[76] | Wu C, Ramaswamy Y, Liu X, et al. Plasma-sprayed CaTiSiO5 ceramic coating on Ti-6Al-4V with excellent bonding strength, stability and cellular bioactivity. J. R. Soc. Interface, 2009, 6(31): 159-168. |
[77] | Wu C, Ramaswamy Y, Gale D, et al. Novel sphene coatings on Ti-6Al-4V for orthopedic implants using Sol-Gel method. Acta Biomater., 2008, 4(3): 569-576. |
[78] | Ramaswamy Y, Wu C, Dunstan C R, et al. Sphene ceramics for orthopedic coating applications: an in vitro and in vivo study. Acta Biomater., 2009, 5(8): 3192-3204. |
[79] | Ramaswamy Y, Wu C, Van Hummel A, et al. The responses of osteoblasts, osteoclasts and endothelial cells to zirconium modified calcium-silicate-based ceramic. Biomaterials, 2008, 29(33): 4392-4402. |
[80] | Lu W, Duan W, Guo Y, et al. Mechanical properties and in vitro bioactivity of Ca5(PO4)2SiO4 bioceramic. J. Biomater. Appl., 2010, 26(6): 637-650. |
[81] | Zhao Y K, Ning C Q, Chang J. Sol-gel synthesis of Na2CaSiO4 and its in vitro biological behaviors. J. Sol-Gel Sci. Tech., 2009, 52(1): 69-74. |
[82] | Du R, Chang J. Preparation and characterization of bioactive Sol-Gel-derived Na2Ca2Si3(O)9. J. Mater. Sci. Mater. Med., 2004, 15(12): 1285-1289. |
[83] | Zreiqat H, Ramaswamy Y, Wu C, et al. The incorporation of strontium and zinc into a calcium-silicon ceramic for bone tissue engineering. Biomaterials, 2010, 31(12): 3175-3184. |
[84] | 吴成铁. Ca-Si-M 系列硅酸盐生物陶瓷的制备及性能研究. 中国科学院上海硅酸盐研究所博士论文, 2006. |
[85] | Lin K L, Zhai W Y, Ni S Y, et al. Study of the mechanical property and in vitro biocompatibility of CaSiO3 ceramics. Ceram. Int., 2005, 31(2): 323-326. |
[86] | Long L H, Chen L D, Bai S Q, et al. Preparation of dense beta-CaSiO3 ceramic with high mechanical strength and HAp formation ability in simulated body fluid. J. Euro. Ceram. Soc., 2006, 26(9): 1701-1706. |
[87] | Gou Z R, Chang J, Zhai W Y. Preparation and characterization of novel bioactive dicalcium silicate ceramics. J. Europ. Ceram. Soc., 2005, 25(9): 1507-1514. |
[88] | Long L H, Zhang F M, Chen L, et al. Preparation and properties of beta-CaSiO3/ZrO2 (3Y) nanocomposites. J. Eur.o Ceram. Soc., 2008, 28(15): 2883-2887. |
[89] | Hodgskinson R, Currey J D. Effects of structural variation on Young's modulus of non-human cancellous bone. Proc. Inst. Mech. Eng. H., 1990, 204(1): 43-52. |
[90] | Hodgskinson R, Currey J D. The effect of variation in structure on the Young's modulus of cancellous bone: a comparison of human and non-human material. Proc. Inst. Mech. Eng. H., 1990, 204(1): 115-121. |
[91] | Morgan E F, Yetkinler D N, Constantz B R, et al. Mechanical properties of carbonated apatite bone mineral substitute: strength, fracture and fatigue behaviour. J. Mater. Sci. Mater. Med., 1997, 8(9): 559-570. |
[92] | Hull D,Clyne T W. An Introduction to Composite Materials. 2nd ed, Cambridge: Cambridge University Press, 1996:78. |
[93] | El-Ghannam A, Ducheyne P, Shapiro I M. Formation of surface reaction products on bioactive glass and their effects on the expression of the osteoblastic phenotype and the deposition of mineralized extracellular matrix. Biomaterials, 1997, 18(4): 295-303. |
[94] | Black L, Stumm A, Garbev K, et al. X-ray photoelectron spectroscopy of the cement clinker phases tricalcium silicate and beta-dicalcium silicate. Cem. Concr. Res., 2003, 33(10): 1561-1565. |
[95] | Richardson I G. The nature of the hydration products in hardened cement pastes. Cem. Concr. Comp., 2000, 22(2): 97-113. |
[96] | Huan Z G, Chang J, Huang X H. Self-setting properties and in vitro bioactivity of Ca2SiO4/CaSO4 center dot 1/2H2O Composite Bone Cement. J. Biomed. Mater. Res. B Appl. Biomater., 2008, 87B(2): 387-394. |
[97] | Huan Z, Chang J. Self-setting properties and in vitro bioactivity of calcium sulfate hemihydrate-tricalcium silicate composite bone cements. Acta Biomater., 2007, 3(6): 952-960. |
[98] | Huan Z, Chang J. Novel tricalcium silicate/monocalcium phosphate monohydrate composite bone cement. J. Biomed. Mater. Res. B Appl Biomater., 2007, 82(2): 352-359. |
[99] | Huan Z, Chang J. Novel bioactive composite bone cements based on the beta-tricalcium phosphate-monocalcium phosphate monohydrate composite cement system. Acta Biomater., 2009, 5(4): 1253-1264. |
100 | Kobayashi M, Nakamura T, Tamura J, et al. Bioactive bone cement: comparison of AW-GC filler with hydroxyapatite and beta-TCP fillers on mechanical and biological properties. J. Biomed. Mater. Res., 1997, 37(3): 301-313. |
101 | Kobayashi M, Nakamura T, Okada Y, et al. Bioactive bone cement: comparison of apatite and wollastonite containing glass-ceramic, hydroxyapatite, and beta-tricalcium phosphate fillers on bone-bonding strength. J. Biomed. Mater. Res., 1998, 42(2): 223-237. |
102 | Lin K L, Chang J, Zeng Y, et al. Preparation of macroporous calcium silicate ceramics. Mater. Lett., 2004, 58(15): 2109-2113. |
103 | Lin K L, Chang J, Liu Z W, et al. Fabrication and characterization of 45S5 bioglass reinforced macroporous calcium silicate bioceramics. J. Euro. Ceram. Soc., 2009, 29(14): 2937-2943. |
104 | Wu C, Ramaswamy Y, Boughton P, et al. Improvement of mechanical and biological properties of porous CaSiO3 scaffolds by poly (D,L-lactic acid) modification. Acta Biomater., 2008, 4(2): 343-353. |
105 | Bohner M. Silicon-substituted calcium phosphates: a critical view. Biomaterials, 2009, 30(32): 6403-6406. |
[1] | 魏相霞, 张晓飞, 徐凯龙, 陈张伟. 增材制造柔性压电材料的现状与展望[J]. 无机材料学报, 2024, 39(9): 965-978. |
[2] | 杨鑫, 韩春秋, 曹玥晗, 贺桢, 周莹. 金属氧化物电催化硝酸盐还原合成氨研究进展[J]. 无机材料学报, 2024, 39(9): 979-991. |
[3] | 刘鹏东, 王桢, 刘永锋, 温广武. 硅泥在锂离子电池中的应用研究进展[J]. 无机材料学报, 2024, 39(9): 992-1004. |
[4] | 黄洁, 汪刘应, 王滨, 刘顾, 王伟超, 葛超群. 基于微纳结构设计的电磁性能调控研究进展[J]. 无机材料学报, 2024, 39(8): 853-870. |
[5] | 陈乾, 苏海军, 姜浩, 申仲琳, 余明辉, 张卓. 超高温氧化物陶瓷激光增材制造及组织性能调控研究进展[J]. 无机材料学报, 2024, 39(7): 741-753. |
[6] | 王伟明, 王为得, 粟毅, 马青松, 姚冬旭, 曾宇平. 以非氧化物为烧结助剂制备高导热氮化硅陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 634-646. |
[7] | 蔡飞燕, 倪德伟, 董绍明. 高熵碳化物超高温陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 591-608. |
[8] | 吴晓晨, 郑瑞晓, 李露, 马浩林, 赵培航, 马朝利. SiCf/SiC陶瓷基复合材料高温环境损伤原位监测研究进展[J]. 无机材料学报, 2024, 39(6): 609-622. |
[9] | 赵日达, 汤素芳. 多孔碳陶瓷化改进反应熔渗法制备陶瓷基复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 623-633. |
[10] | 方光武, 谢浩元, 张华军, 高希光, 宋迎东. CMC-EBC损伤耦合机理及一体化设计研究进展[J]. 无机材料学报, 2024, 39(6): 647-661. |
[11] | 张幸红, 王义铭, 程源, 董顺, 胡平. 超高温陶瓷复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 571-590. |
[12] | 张慧, 许志鹏, 朱从潭, 郭学益, 杨英. 大面积有机-无机杂化钙钛矿薄膜及其光伏应用研究进展[J]. 无机材料学报, 2024, 39(5): 457-466. |
[13] | 李宗晓, 胡令祥, 王敬蕊, 诸葛飞. 氧化物神经元器件及其神经网络应用[J]. 无机材料学报, 2024, 39(4): 345-358. |
[14] | 鲍可, 李西军. 化学气相沉积法制备智能窗用热致变色VO2薄膜的研究进展[J]. 无机材料学报, 2024, 39(3): 233-258. |
[15] | 胡梦菲, 黄丽萍, 李贺, 张国军, 吴厚政. 锂/钠离子电池硬碳负极材料的研究进展[J]. 无机材料学报, 2024, 39(1): 32-44. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||