[1] |
ZHOU H, CHEN Q, LI G, et al. Interface engineering of highly efficient perovskite solar cells. Science, 2014,345(6196):542-546.
DOI
URL
PMID
|
[2] |
LÜ W Z, LI L, XU M C, et al. Improving the stability of metal halide perovskite quantum dots by encapsulation. Advanced Materials, 2019,31(28):1900682.
|
[3] |
LI X M, WU Y, ZHANG S L, et al. CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Advanced Functional Materials, 2016,26(15):2435-2445.
|
[4] |
LIUY , LI F S, LI Q Q, et al. Emissions at perovskite quantum dot/film interface with halide anion exchange. ACS Photonics, 2018,5(11):4504-4512.
|
[5] |
PARK S, CHANG W J, LEE C W, et al. Photocatalytic gydrogen generation from hydriodic acid using methylammonium lead iodide in dynamic equilibrium with aqueous solution. Nature Energy, 2016,2(1):16185.
|
[6] |
HA S T, SU R, XING J, et al. Metal halide perovskite nanomaterials: synthesis and applications. Chemical Science, 2017,8(4):2522-2536.
URL
PMID
|
[7] |
LI X, CAO F, YU D, et al. All inorganic halide perovskites nanosystem: synthesis, structural features, optical properties and optoelectronic applications. Small, 2017,13(9):1603996.
|
[8] |
AKKERMAN Q A, RAINO G, KOVALENKO M V, et al. Genesis challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nature Materials, 2018,17(5):394.
URL
PMID
|
[9] |
BAI S, YUAN Z, GAO F, et al. Colloidal metal halide perovskite nanocrystals: synthesis characterization and applications. Journal of Materials Chemistry C, 2016,4(18):3898-3904.
|
[10] |
ATOURKI L, VEGA E, MAN B, et al. Role of the chemical substitution on the structural and luminescence properties of the mixed halide perovskite thin MAPbI3-xBrx(0≤x≤1) films. Applied Surface Science, 2016,371:112-117.
|
[11] |
OTTO T, MULLER M, MUNDRA P, et al. Colloidal nanocrystals embedded in macrocrystals: robustness, photostability, and color purity. Nano Letters, 2012,12(10):5348-5354.
URL
PMID
|
[12] |
HANSKE C, HILL E H, VILA-LIARTE D, et al. Solvent-assisted self-assembly of gold nanorods into hierarchically organized plasmonic mesostructures. ACS Applied Materials & Interfaces, 2019,11(12):11763-11771.
DOI
URL
PMID
|
[13] |
SHAO H, BAI X, PAN G, et al. Highly efficient and stable blue-emitting CsPbBr3@SiO2 nanospheres through low temperature synthesis for nanoprinting and wled. Nanotechnology, 2018,29(28):285706.
URL
PMID
|
[14] |
LOIUDICE A, SARIS S, OVEISI E, et al. CsPbBr3 QD/AlOx inorganic nanocomposites with exceptional stability in water light and heat. Angewandte Chemie International Edition, 2017,56(53):10696-10701.
|
[15] |
LIAO J F, XU Y F, WANG X D, et al. CsPbBr3 nanocrystal/MO2(M=Si, Ti, Sn) composites: insight into charge-carrier dynamics and photoelectrochemical applications. ACS Applied Materials & Interfaces, 2018,10(49):42301-42309.
URL
PMID
|
[16] |
LIU S, HE M, DI X, et al. CsPbX3 nanocrystals films coated on YAG: Ce3+ pig for warm white lighting source. Chemical Engineering Journal, 2017,330:823-830.
|
[17] |
XIN Y, ZHAO H, ZHANG J, et al. Highly stable and luminescent perovskite-polymer composites from a convenient and universal strategy. ACS Applied Materials & Interfaces, 2018,10(5):4971-4980.
URL
PMID
|
[18] |
ZHOU Q, BAI Z, LU W G, et al. In situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights. Advanced Materials, 2016,28(41):9163-9168.
URL
PMID
|
[19] |
LI Z J, HOFMAN E, LI J, et al. Photoelectrochemically active and environmentally stable CsPbBr3/TiO2 core/shell nanocrystals. Advanced Functional Materials, 2018,28(1):1704288.
|
[20] |
PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Letters, 2015,15(6):3692-3696.
URL
PMID
|
[21] |
FANG X X. Construction of highly ordered ZnO-TiO2 nanotube arrays (ZnO/TNTs) heterostructure for photocatalytic application. ACS Applied Materials & Interfaces, 2012,4(12):7055-7063.
DOI
URL
PMID
|
[22] |
GUO W, LIN Z, WANG X, et al. Sonochemical synthesis of nanocrystalline TiO2 by hydrolysis of titanium alkoxides. Microelectronic Engineering, 2003,66(1-4):95-101.
|
[23] |
YANG J, WANG Y, LI W, et al. Amorphous TiO2 shells: a vital elastic buffering layer on silicon nanoparticles for high-performance and safe lithium storage. Advanced Materials, 2017,29(48):1700523.
|
[24] |
KIM H G, BORSE P H, CHOI W Y, et al. Photocatalytic nanodiodes for visible light photocatalysis. Angewandte Chemie International Edition, 2005,44(29):4585-4589.
URL
PMID
|
[25] |
ZHOU D, ZHI C, QIAN Y, et al. In-situ construction of all-solid-state Z-scheme g-C3N4/TiO2 nanotube arrays photocatalyst with enhanced visible-light-induced properties. Solar Energy Materials and Solar Cells, 2016,157:399-405.
|
[26] |
ZHOU J, CHEN W, SUN C, et al. Oxidative polyoxometalates modified graphitic carbon nitride for visible-light CO2 reduction. ACS Applied Materials & Interfaces, 2017,9(13):11689-11695.
URL
PMID
|
[27] |
DONG Y, QIAO T, KIM D, et al. Precise control of quantum confinement in cesium lead halide perovskite quantum dots via thermodynamic equilibrium. Nano Letters, 2018,18(6):3716-3722.
DOI
URL
PMID
|
[28] |
LEE S, LEE K, KIM W D, et al. Thin amorphous TiO2 shell on CdSe nanocrystal quantum dots enhances photocatalysis of hydrogen evolution from water. The Journal of Physical Chemistry C, 2014,118(41):23627-23634.
|