无机材料学报 ›› 2019, Vol. 34 ›› Issue (4): 425-432.DOI: 10.15541/jim20180299
所属专题: 光催化材料与技术; 优秀作者论文集锦; 2019~2020年度优秀作者作品欣赏:环境材料
刘旸1,于姗1(),郑凯文1,陈维维1,董兴安2,董帆2,周莹1()
收稿日期:
2018-07-02
修回日期:
2018-10-08
出版日期:
2019-04-20
网络出版日期:
2019-04-15
作者简介:
刘 旸(1992-), 男, 博士研究生. E-mail:18251856797@163.com
基金资助:
Yang LIU1,Shan YU1(),Kai-Wen ZHENG1,Wei-Wei CHEN1,Xing-An DONG2,Fan DONG2,Ying ZHOU1()
Received:
2018-07-02
Revised:
2018-10-08
Published:
2019-04-20
Online:
2019-04-15
Supported by:
摘要:
本实验成功制备了氮掺杂碳酸氧铋(N-Bi2O2CO3, N-BOC)/硒化镉量子点(CdSe QDs)复合光催化剂, 并将其运用于光催化降解室内空气污染物一氧化氮(NO)。X射线衍射、透射电子显微镜和光电子能谱测试结果表明N-BOC光催化剂在保持原有纳米片结构和形貌的基础上成功负载了CdSe QDs。光催化氧化NO实验结果显示CdSe QDs的引入可显著提高N-BOC的NO去除率, 并且二次毒副产物NO2生成率大幅度降低至1%, 表明复合光催化剂具有极强的毒副产物抑制特性。固体紫外漫反射吸收光谱和发光光谱测试表明CdSe QDs拓宽并提升了N-BOC的光响应范围和能力, 并有效抑制了光生电子-空穴的复合效率。通过原位漫反射傅里叶变换红外光谱技术(DRIFTS)分析, 发现在N-BOC/CdSe QDs光催化氧化NO反应过程中没有NO2信号产生, 仅观测到NO3 -相关信号。机理分析表明超氧自由基(O2 -)和光生空穴(h +)是体系中可能存在的活性物种, 实现了对NO到NO3 -的彻底氧化。
中图分类号:
刘旸, 于姗, 郑凯文, 陈维维, 董兴安, 董帆, 周莹. N-Bi2O2CO3/CdSe量子点光催化氧化NO及原位红外光谱研究[J]. 无机材料学报, 2019, 34(4): 425-432.
Yang LIU, Shan YU, Kai-Wen ZHENG, Wei-Wei CHEN, Xing-An DONG, Fan DONG, Ying ZHOU. NO Photo-oxidation and In-situ DRIFTS Studies on N-doped Bi2O2CO3/CdSe Quantum Dot Composite[J]. Journal of Inorganic Materials, 2019, 34(4): 425-432.
图2 可见光下N-BOC和N-BOC/CdSe QDs的NO降解率(a), NO2生成率(b), N-BOC/CdSe QDs (1%)样品的可见光(c)和全光谱下(d)NO循环降解图
Fig. 2 Photocatalytic removal ratio of NO (a) and generation of NO2 (b) in the presence of N-BOC and N-BOC/CdSe QDs under visible light irradiation (λ>420 nm), and photocatalytic recycling tests on N-BOC/CdSe QDs (1%) under visible light (c) and UV-Visible light (d) irradiation
图5 N-BOC和N-BOC/CdSe QDs(1%)的XPS的Bi 4f (a), O 1s (b), C 1s (c)的精细谱和价带谱(d)
Fig. 5 High-resolution XPS spectra of Bi 4f (a), O 1s (b), C 1s (c), and valance band (d) of N-BOC and N-BOC/CdSe QDs (1%) sample
图6 N-BOC和N-BOC/CdSe QDs的紫外-可见漫反射光谱图
Fig. 6 UV-Vis DRS of N-BOC and N-BOC/CdSe QDs Insets are the absorption spectrum of CdSe QDs dispersed in water (up) and enlarged spectra of N-BOC/CdSe QDs composite (down)
Species | Redox potential (NHE) | |
---|---|---|
Potential/eV | Ref. | |
O2/?O2- | -0.28 | [30] |
NO/NO2 | 0.94 | [29] |
NO/NO3- | 1.03 | [29] |
表1 不同活性物种的氧化还原电位
Table 1 Redox potentials of different active species
Species | Redox potential (NHE) | |
---|---|---|
Potential/eV | Ref. | |
O2/?O2- | -0.28 | [30] |
NO/NO2 | 0.94 | [29] |
NO/NO3- | 1.03 | [29] |
图8 N-BOC/CdSe QDs (1%)在暗场吸附(a), 光催化反应(b)和脱附过程中的原位红外光谱图
Fig. 8 In situ DRIFTS of NO adsorption on N-BOC/CdSe QDs (1%) before (a), during (b) and after (c) visible light illumination
Wavenumber/cm-1 | Assignment | Ref. |
---|---|---|
935 | Bidentate nitrite | [31] |
949, 978 | Monodentate nitrate | [32-35] |
1002 | Bridge nitrate | [32-35] |
1024 | Bidentate/monodentate nitrate | [8, 32-35] |
1092, 1134 | NO | [31] |
1180 | NO- | [8,18] |
1120 | Bidentate nitrite | [18, 31] |
1262 | Monodentate nitrate | [18, 31] |
表2 NO吸附及光催化过程中关于红外峰的归属
Table 2 Assignments of the IR bands observed during NO adsorption and photocatalysis over N-BOC/CdSe QDs
Wavenumber/cm-1 | Assignment | Ref. |
---|---|---|
935 | Bidentate nitrite | [31] |
949, 978 | Monodentate nitrate | [32-35] |
1002 | Bridge nitrate | [32-35] |
1024 | Bidentate/monodentate nitrate | [8, 32-35] |
1092, 1134 | NO | [31] |
1180 | NO- | [8,18] |
1120 | Bidentate nitrite | [18, 31] |
1262 | Monodentate nitrate | [18, 31] |
[1] | HOFFMANN M R, MARTIN S T, CHOI W Y , et al. Environmetal applications of semiconductor photocatalysis. Chemical Reviews, 1995,95(1):69-96. |
[2] | ZHOU YING, LI WEI, ZHANG QIAN , et al. Non-noble metal plasmonic photocatalysis in semimetal bismuth films for photocatalytic NO oxidation. Physical Chemistry Chemical Physics, 2017,19(37):25610-25616. |
[3] | OLSSON L, PERSSON H, FRIDELL E , et al. A kinetic study of NO oxidation and NOx storage on Pt/Al2O3 and Pt/BaO/Al2O3. Journal of Physical Chemisty B, 2001,105(29):6895-6906. |
[4] | CAI SHI-YI, YU SHAN, WAN WEN-CHAO , et al. Self-template synthesis of ATiO3 (A=Ba, Pb and Sr) perovskites for photocatalytic removal of NO. RSC Advance, 2017,7(44):27397-27404. |
[5] | OBRUBIA J A, PEREDA-AYO B, DE-LA-TORRE U , et al. Key factors in Sr-doped LaBO3 (B=Co or Mn) perovskites for NO oxidation in efficient diesel exhaust purification. Applied Catalysis B: Environmental, 2017,213(15):198-210. |
[6] | LUO JIAN-MING, DONG GUO-HUI, ZHU YUN-QING , et al. Switching of semiconducting behavior from n-type to p-type induced high photocatalytic NO removal activity in g-C3N4. Applied Catalysis B: Environmental, 2017,214(5):46-56. |
[7] | WANG ZHEN-YU, HUANG YU, HO WEI-KEI , et al. Fabrication of Bi2O2CO3/g-C3N4 heterojunctions for efficiently photocatalytic NO in air removal: in-situ self-sacrificial synthesis characterizations and mechanistic study. Applied Catalysis B: Environmental, 2016,199(15):123-133. |
[8] | ZHANG GUO-YING, SHEN XING-QI, YANG LI-MIN , et al. RGO/Bi2O2CO3: one-step synthesis and photocatalytic property. Journal of Inorganic Materials, 2017,32(11):1202-1208. |
[9] | WANG WEN-ZHONG, SHANG MENG, YIN WEN-ZONG , et al. Recent progress on the bismuth containing complex oxide photocatalysts. Journal of Inorganic Materials, 2012,30(10):1009-1017. |
[10] | LIU JIA-QIN, WU YU-CHENG . Recent advances in the high performance BiOX(X=Cl, Br, I) based photo-catalysts. Journal of Inorganic Materials, 2015,27(1):11-18. |
[11] | CHEN LANG, HUANG RUI, YIN SHUNG-FENG , et al. Flower-like Bi2O2CO3: facile synthesis and their photocatalytic application in treatment of dye-containing wastewater. Chemical Engineering Journal, 2012, 193-194(15):123-130. |
[12] | MADHUSUDAN P, ZHANG JUN, CHENG BEI , et al. Photocatalytic degradation of organic dyes with hierarchical Bi2O2CO3 microstructures under visible-light. CrysEngComm, 2013,15(2):231-240. |
[13] | ZHOU YING, ZHAO ZI-YAN, WANG FANG , et al. Facile synthesis of surface N-doped Bi2O2CO3: origin of visible light photocatalytic activity and in situ DRIFTS studies. Journal of Hazardous Material, 2016,307(15):163-172. |
[14] | HENSEL J, WANG GONG-MING, LI YAT , et al. Synergistic effect of CdSe quantum dot sensitization and nitrogen doping of TiO2 nanostructures for photoelectrochemical solar hydrogen generation. Nano Letter, 2010,10(2):478-483. |
[15] | JI YUN-FANG, GUO WEI, CHEN HUI-HUI , et al. Surface Ti3+/Ti4+ redox shuttle enhancing photocatalytic H2 production in ultrathin TiO2 nanosheets/CdSe quantum dots. Journal of Physical Chemisty C, 2015,119(48):27053-27059. |
[16] | CHEN YU-BIN, CHUANG CHI-HUNG, QIN ZHI-XIAO , et al. Electron-transfer dependent photocatalytic hydrogen generation over cross-linked CdSe/TiO2 type-II heterostructure. Nanotechnology, 2017,28(8):84002. |
[17] | ZHOU YING, ZHANG XIAO-JING, ZHANG QIAN , et al. Role of graphene on the band structure and interfacial interaction of Bi2WO6/graphene composites with enhanced photocatalytic oxidation of NO. Journal of Material Chemistry A, 2014,2(39):16623-16631. |
[18] | LIU YANG, YU SHAN, ZHAO ZI-YAN , et al. N doped Bi2O2CO3/ graphene quantum dot composite photocatalyst: enhanced visible- light photocatalytic no oxidation and in situ drifts studies. Journal of Physical Chemistry C, 2017,121(22):12168-12177. |
[19] | PAN DENG-YU, JIAO JIN-KAI, LI ZHEN , et al. Efficient separation of electron-hole pairs in graphene quantum dots by TiO2 heterojunctions for dye degradation. ACS Sustainable Chemistry & Engineering, 2015,3(10):2405-2413. |
[20] | YU HUI-JUN, ZHAO YU-FEI, ZHOU CHAO , et al. Carbon quantum dots/TiO2 composites for efficient photocatalytic hydrogen evolution. Journal of Material Chemistry A, 2014,2(10):3344-3351. |
[21] | HUANG YU, AI ZHI-HUI, HO WEI-KEI , et al. Ultrasonic spray pyrolysis synthesis of porous Bi2WO6 microspheres and their visible- light-induced photocatalytic removal of NO. Journal of Physical Chemisty C, 2010,114(14):6342-6349. |
[22] | CEN WANG-LAI, XIONG TING, TANG CHI-YAO , et al. Effects of morphology and crystallinity on the photocatalytic activity of (BiO)2CO3 nano/microstructures. Industrial Engineering Chemistry Research, 2014,53(39):15002-15011. |
[23] | YU SHAN, LI ZHI-JUN, FAN XIANG-BING , et al. Vectorial electron transfer for improved hydrogen evolution by mercaptopropionic acid-regulated CdSe quantum-dots-TiO2-Ni(OH)2 assembly. ChemSusChem, 2015,8(4):642-649. |
[24] | NORRIS D J, BAWENDI M G . Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots. Physical Review B, 1996,53(24):16338-16346. |
[25] | NOZIK A J, MEMMING R . Physical chemistry of semiconductor- liquid interfaces. Journal of Physical Chemistry, 1996,100(31):13061-13078. |
[26] | LIU WEN-JUN, CAI JING-YU, LI ZHAO-HUI , et al. Self- assembly of semiconductor nanoparticles/reduced graphene oxide (RGO) composite aerogels for enhanced photocatalytic performance and facile recycling in aqueous photocatalysis. ACS Sustainable Chemistry Engineering, 2015,3(2):277-282. |
[27] | SONG QIANG, LI LI, LUO HONG-XIANG , et al. Hierarchical nanoflower-ring structure Bi2O3/(BiO)2CO3 composite for photocatalytic degradation of Rhodamine B. Chinese Journal of Inorganic Chemistry, 2017,33(7):1161-1171. |
[28] | ZHAO ZI-YAN, ZHOU YING, WANG FANG , et al. Polyaniline- decorated {001} facets of Bi2O2CO3 nanosheets: in situ oxygen vacancy formation and enhanced visible light photo- catalytic activity. ACS Applied Material Interfaces, 2015,7(1):730-737. |
[29] | BI JUN, WU YAN-BO, ZHAO HENG-YAN , et al. Preparation and photocatalytic properties of La2CoFeO6 bamboo-like hollow nanofibers. Journal of Inorganic Materials, 2015,30(10):1031-1036. |
[30] | YIN SHU, LIU BIN, ZHANG PEI-LIN , et al. Photocatalytic oxidation of NOx under visible LED light irradiation over nitrogen- doped titania particles with iron or platinum loading. J. Phys. Chem.C, 2008,112(32):12425-12431. |
[31] | GE SU-XIANG, ZHANG LI-ZHI , et al. Efficient visible light driven photocatalytic removal of RhB and NO with low temperature synthesized In(OH)xSy hollow nanocubes: a comparative study. Environmental Science & Technology, 2011,45(7):3027-3033. |
[32] | WANG ZHEN-YU, GUAN WEI, SUN YAN-JUAN , et al. Water- assisted production of honeycomb-like g-C3N4 with ultralong carrier lifetime and outstanding photocatalytic activity. Nanoscale, 2015,7(6):2471-247. |
[33] | DONG XING-AN, ZHANG WEN-DONG, CUI WEN , et al. Pt quantum dots deposited on N-doped (BiO)2CO3: enhanced visible light photocatalytic NO removal and reaction pathway. Catalysis Science & Technology, 2017,7(6):1324-1332. |
[34] | MARTIROSYAN G G, AZIZYAN A S, KURTIKYAN T S , et al. In situ FT-IR and UV-Vis spectroscopy of the low-temperature NO disproportionation mediated by solid state manganese(II) porphyrinates. Inorganic Chemistry, 2006,45(10):4079-4087. |
[35] | HADJIIVANOV K, AVREYSKA V, KLISSURSKI D , et al. Surface species formed after NO adsorption and NO + O2 coadsorption on ZrO2 and sulfated ZrO2: an FT-IR spectroscopic study. Langmuir, 2002,18(5):1619-1625. |
[1] | 伍林, 胡明蕾, 王丽萍, 黄少萌, 周湘远. TiHAP@g-C3N4异质结的制备及光催化降解甲基橙[J]. 无机材料学报, 2023, 38(5): 503-510. |
[2] | 马心全, 李喜宝, 陈智, 冯志军, 黄军同. S型异质结BiOBr/ZnMoO4的构建及光催化降解性能研究[J]. 无机材料学报, 2023, 38(1): 62-70. |
[3] | 陈瀚翔, 周敏, 莫曌, 宜坚坚, 李华明, 许晖. CoN/g-C3N4 0D/2D复合结构及其光催化制氢性能研究[J]. 无机材料学报, 2022, 37(9): 1001-1008. |
[4] | 薛虹云, 王聪宇, MAHMOOD Asad, 于佳君, 王焱, 谢晓峰, 孙静. 二维g-C3N4与Ag-TiO2复合光催化剂降解气态乙醛抗失活研究[J]. 无机材料学报, 2022, 37(8): 865-872. |
[5] | 洪佳辉, 马冉, 仵云超, 文涛, 艾玥洁. MOFs自牺牲模板法制备CoNx/g-C3N4纳米材料用作高效光催化还原U(VI)[J]. 无机材料学报, 2022, 37(7): 741-749. |
[6] | 迟聪聪, 屈盼盼, 任超男, 许馨, 白飞飞, 张丹洁. SiO2@Ag@SiO2@TiO2核壳结构的制备及其光催化降解性能[J]. 无机材料学报, 2022, 37(7): 750-756. |
[7] | 王晓俊, 许文, 刘润路, 潘辉, 朱申敏. 水凝胶负载的纳米银/氮化碳光催化剂的制备及性能研究[J]. 无机材料学报, 2022, 37(7): 731-740. |
[8] | 安琳, 吴淏, 韩鑫, 李耀刚, 王宏志, 张青红. 非贵金属Co5.47N/N-rGO助催化剂增强TiO2光催化制氢性能[J]. 无机材料学报, 2022, 37(5): 534-540. |
[9] | 陈士昆, 王楚楚, 陈晔, 李莉, 潘路, 文桂林. 磁性Ag2S/Ag/CoFe1.95Sm0.05O4 Z型异质结的制备及光催化降解性能[J]. 无机材料学报, 2022, 37(12): 1329-1336. |
[10] | 张弦, 张策, 姜文君, 冯德强, 姚伟. 四元BiMnVO5的合成、电子结构与可见光催化性能研究[J]. 无机材料学报, 2022, 37(1): 58-64. |
[11] | 高娃, 熊宇杰, 吴聪萍, 周勇, 邹志刚. 基于超薄纳米结构的光催化二氧化碳选择性转化[J]. 无机材料学报, 2022, 37(1): 3-14. |
[12] | 王潇, 朱智杰, 吴之怡, 张城城, 陈志杰, 肖梦琦, 李超然, 何乐. 钴等离激元超结构粉体催化剂的制备及其光热催化应用[J]. 无机材料学报, 2022, 37(1): 22-28. |
[13] | 刘彭, 吴仕淼, 吴昀峰, 张宁. Zn0.4(CuGa)0.3Ga2S4/CdS光催化材料的制备及其CO2还原性能[J]. 无机材料学报, 2022, 37(1): 15-21. |
[14] | 刘雪晨, 曾滴, 周沅逸, 王海鹏, 张玲, 王文中. 改性氮化碳光催化剂在生物质氧化反应中的应用[J]. 无机材料学报, 2022, 37(1): 38-44. |
[15] | 王路平, 卢占会, 魏鑫, 方明, 王祥科. 改进的灰色模型在光催化数据预测中的应用[J]. 无机材料学报, 2021, 36(8): 871-876. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||