无机材料学报 ›› 2022, Vol. 37 ›› Issue (11): 1170-1180.DOI: 10.15541/jim20220158
黄田1,2,3(), 赵运超1,2,3, 李琳琳2,3,4()
收稿日期:
2022-03-21
修回日期:
2022-04-24
出版日期:
2022-06-16
网络出版日期:
2022-06-16
通讯作者:
李琳琳, 研究员. E-mail: lilinlin@binn.cas.cn作者简介:
黄田(1996-), 女, 硕士研究生. E-mail: huangtian@binn.cas.cn
基金资助:
HUANG Tian1,2,3(), ZHAO Yunchao1,2,3, LI Linlin2,3,4()
Received:
2022-03-21
Revised:
2022-04-24
Published:
2022-06-16
Online:
2022-06-16
Contact:
LI Linlin, professor. E-mail: lilinlin@binn.cas.cnAbout author:
HUANG Tian (1996-), female, Master candidate. E-mail: huangtian@binn.cas.cn
Supported by:
摘要:
随着纳米医学的发展, 利用纳米材料在外源超声波的刺激下催化产生过量的活性氧物种(Reactive Oxygen Species, ROS)以治疗疾病的方法, 被称为声动力疗法(Sonodynamic Therapy, SDT), 已引起人们的广泛关注。目前, 开发可用于SDT的高效声敏剂用于提高ROS产率, 仍然是当前研究和未来临床转化的最大挑战之一。近年来, 得益于压电电子学和压电光电子学的兴起, 基于压电半导体纳米材料的新型声敏剂在SDT中崭露头角, 显示出良好的应用前景。本文从压电半导体的结构出发, 介绍了压电半导体纳米材料应用于SDT的机理研究, 以及利用压电半导体纳米材料作为声敏剂在声动力学癌症治疗及相关抗菌性能方面所取得的研究进展。最后, 本文对该领域存在的问题以及未来的发展趋势进行了展望。
中图分类号:
黄田, 赵运超, 李琳琳. 压电半导体纳米材料在声动力疗法中的应用进展[J]. 无机材料学报, 2022, 37(11): 1170-1180.
HUANG Tian, ZHAO Yunchao, LI Linlin. Piezoelectric Semiconductor Nanomaterials in Sonodynamic Therapy: a Review[J]. Journal of Inorganic Materials, 2022, 37(11): 1170-1180.
图1 压电半导体的结构特点[24]
Fig. 1 Structural characteristics of piezoelectric semiconductors[24] (a,b) Crystal structures of (a) perovskite BaTiO3 and (b) wurtzite ZnO; (c) Influence of stacking on the piezoelectric effect of MoS2 at crystal structure of (i) single-layer, (ii) 2H and (iii) 3R
图2 空化效应与声致发光[25]
Fig. 2 Cavitation effect and sonoluminescence (SL)[25] (a) Schematic of cavitation effect with ultrasound; (b) Illustration of SL-excited photocatalysis
图3 压电催化示意图[32]
Fig. 3 Schematic of piezocatalysis[32] (a) Original electrostatic balance state of a poled piezoelectric material; (b) Charge release and ROS production under stress; (c) Modified electrostatic balance state under maximum stress; (d) Adsorption of charges from the surrounding electrolyte under reduced stress, and the opposite charges in the electrolyte are involved in ROS production
图4 压电光电子学效应对载流子迁移的影响[34]
Fig. 4 Influence of piezo-phototronic effect on carrier migration[34] (a) Semiconductor-electrolyte; (b) Metal-semiconductor; (c) Type-II; (d) Z-scheme CB: Conduction band; VB: Valence band; SC: Semiconductor
Application | Nanomaterial | Frequency/MHz | Power/(W·cm-2) | Duty ratio/% | Duration/min | Ref. |
---|---|---|---|---|---|---|
Cancer treatment | BP | 1 | 1.5 | - | 10 (4 times) | [ |
T-BTO | 1 | 1.0 | 50 | 10 (3 times) | [ | |
Bi2MoO6 | 0.04 | 3.0 | 50 | 5 (3 times) | [ | |
Au@BP | 1 | 2.0 | 40 | 2.5 (4 times) | [ | |
D-ZnOx:Gd | 1 | 1.0 | 50 | - | [ | |
Antibacteria | HNTM-MoS2 | 1 | 1.5 | 50 | 15 (Twice) | [ |
Au@BTO | 1 | 1.5 | 50 | 3 (Once) | [ |
表1 压电半导体纳米材料用于SDT的动物实验中所使用的超声激发装置的相关参数
Table 1 Parameters of ultrasonic excitation devices used in animal experiments of sonodynamic therapy with piezoelectric semiconductor nanomaterials
Application | Nanomaterial | Frequency/MHz | Power/(W·cm-2) | Duty ratio/% | Duration/min | Ref. |
---|---|---|---|---|---|---|
Cancer treatment | BP | 1 | 1.5 | - | 10 (4 times) | [ |
T-BTO | 1 | 1.0 | 50 | 10 (3 times) | [ | |
Bi2MoO6 | 0.04 | 3.0 | 50 | 5 (3 times) | [ | |
Au@BP | 1 | 2.0 | 40 | 2.5 (4 times) | [ | |
D-ZnOx:Gd | 1 | 1.0 | 50 | - | [ | |
Antibacteria | HNTM-MoS2 | 1 | 1.5 | 50 | 15 (Twice) | [ |
Au@BTO | 1 | 1.5 | 50 | 3 (Once) | [ |
图5 压电半导体纳米材料超声条件下的能带倾斜增强SDT抗肿瘤应用[39⇓-41]
Fig. 5 Anti-tumor application of piezoelectric semiconductor nanomaterials in SDT enhanced by band tilt under ultrasound irradiation[39⇓-41] (a, b)Band structures of (a) black phosphorus (BP) nanosheets[39] and (b) T-BaTiO3 nanoparticles[40]; (c) Bi2MoO6 nanorods (BMO NRs) and GSH-activated BMO NRs (GBMO NRs) and their ROS generation under ultrasonic irradiation[41];CB: Conduction band; VB: Valence band; RHE: Relative hyedrogen electrode; NHE: Normal hydrogen electrode
图6 在压电半导体纳米材料上构建异质结或引入缺陷来提高SDT效率[42-43]
Fig. 6 Efficiency of SDT improved by constructing heterojunction or introducing defects on piezoelectric semiconductor nanomaterials[42-43] (a) i: Schematic diagram of the preparation and SDT treatment with Au@BP, ii: Time-dependent fluorescence of singlet oxygen sensor green (SOSG) under ultrasound irradiation, iii: Intracellular ROS level after different treatments[42] with (1-6) indicate blank, ultrasound, BP nanosheets, Au@BP nanohybrids, BP nanosheets with ultrasound, and Au@BP nanohybrids with ultrasound, respectively; (b) i: Schematic illustration of D-ZnOx:Gd under ultrasound irradiation, ii: Strucure of defect-free ZnO and defect-rich D-ZnOx:Gd and their adsorption energies with O2 and H2O [43] BP: Black phosphorus; CB: Conduction band; VB: Valence band
图7 压电半导体纳米材料在抗菌中的应用[44-45]
Fig. 7 Application of piezoelectric semiconductor nanomaterials in anti-bacterial[44-45] (a) i: HRTEM image of WS2 NFs, ii: Piezo force microscopy image and 3D piezoelectric potential image of WS2 NFs, iii: •OH and 1O2 were measured by electron spin-resonance spectroscopy (EPR), iv: Antibacterial properties of WS2 NFs against E. coli after ultrasound treatment; (b) Sonodynamic mechanism of porphyrin-based hollow metal-organic framework-MoS2 (HNTM-MoS2) and therapy on osteomyelitis; MRSA: Methicillin-resistant S. aureus; LUMO: Lowest unoccupied molecular orbital; HOMO: Highest occupied molecular orbital; HNTM: Hollow metal-organic framework; RBC: Red blood cell; iNOS: Inducible nitric oxide synthase; TGF-β: Transforming growth factor-β
图8 Au@BTO用于抗菌和创口修复[46]
Fig. 8 Au@BTO for bacterial elimination and wound healing[46] (a) Mechanism of sonodynamic therapy using Au@BTO under ultrasound irradiation; (b) Sonodynamic antibacterial effect of Au@BTO against E. coli and S. aureus; (c) Representative photographs of mouse S. aureus infected wounds at different time (d) Representative images of NIH-3T3 cell migration; NHE: Normal hydrogen electrode; US: Ultrasound
[1] |
BODEGA G, ALIQUE M, PUEBLA L, et al. Microvesicles: ROS scavengers and ROS producers. Journal of Extracellular Vesicles, 2019, 8(1): 1626654-10.
DOI URL |
[2] | CAO Z, LI D, WANG J, et al. Reactive oxygen species-sensitive polymeric nanocarriers for synergistic cancer therapy. Acta Biomaterialia, 2021, 130: 17-31. |
[3] | HE Y, HUA LIU S, YIN J, et al. Sonodynamic and chemodynamic therapy based on organic/organometallic sensitizers. Coordination Chemistry Reviews, 2021, 429: 213610-21. |
[4] |
YANG B, CHEN Y, SHI J. Reactive oxygen species (ROS)-based nanomedicine. Chemical Reviews, 2019, 119(8): 4881-4985.
DOI PMID |
[5] |
YUMITA N, NISHIGAKI R, UMEMURA K, et al. Hematoporphy- rin as a sensitizer of cell-damaging effect of ultrasound. Japanese Journal of Cancer Research, 1989, 80(3): 219-222.
DOI URL |
[6] | LIU R, ZHANG Q, LANG Y, et al. Sonodynamic therapy, a treatment developing from photodynamic therapy. Photodiagnosis and Photodynamic Therapy, 2017, 19: 159-166. |
[7] |
WANG H, PAN X, WANG X, et al. Degradable carbon-silica nano-composite with immunoadjuvant property for dual-modality photother-mal/photodynamic therapy. ACS Nano, 2020, 14(3): 2847-2859.
DOI URL |
[8] |
YAO S, ZHAO X, WAN X, et al. π-π conjugation promoted nano-catalysis for cancer therapy based on a covalent organic framework. Materials Horizons, 2021, 8(12): 3457-3467.
DOI URL |
[9] |
DEEPAGAN V G, YOU D G, UM W, et al. Long-circulating Au- TiO2 nanocomposite as a sonosensitizer for ROS-mediated eradication of cancer. Nano Letters, 2016, 16(10): 6257-6264.
DOI URL |
[10] |
GONG F, CHENG L, YANG N, et al. Ultrasmall oxygen-deficient bimetallic oxide MnWOx nanoparticles for depletion of endogenous GSH and enhanced sonodynamic cancer therapy. Advanced Materials, 2019, 31(23): 1900730-9.
DOI URL |
[11] |
ZHONG X, WANG X, CHENG L, et al. GSH-depleted PtCu3 nanocages for chemodynamic-enhanced sonodynamic cancer therapy. Advanced Functional Materials, 2020, 30(4): 1907954-12.
DOI URL |
[12] |
ZHANG H, PAN X, WU Q, et al. Manganese carbonate nanoparti-cles-mediated mitochondrial dysfunction for enhanced sonodynamic therapy. Exploration, 2021, 1(2): 20210010-12.
DOI URL |
[13] |
ZHU L, WANG Z L. Recent progress in piezo-phototronic effect enhanced solar cells. Advanced Functional Materials, 2019, 29(41): 1808214-18.
DOI URL |
[14] |
CHORSI M T, CURRY E J, CHORSI H T, et al. Piezoelectric biomaterials for sensors and actuators. Advanced Materials, 2019, 31(1): 1802084-15.
DOI URL |
[15] |
XU Q, GAO X, ZHAO S, et al. Construction of bio-piezoelectric platforms: from structures and synthesis to applications. Advanced Materials, 2021, 33(27): 2008452-28.
DOI URL |
[16] |
WANG W, XU M, XU X, et al. Perovskite oxide based electrodes for high-performance photoelectrochemical water splitting. Angewandte Chemie International Edition, 2020, 59(1): 136-152.
DOI URL |
[17] | YU X, WANG S, ZHANG X, et al. Heterostructured nanorod array with piezophototronic and plasmonic effect for photodynamic bacteria killing and wound healing. Nano Energy, 2018, 46: 29-38. |
[18] |
MANNA S, TALLEY K R, GORAI P, et al. Enhanced piezoelectric response of AlN via CrN alloying. Physical Review Applied, 2018, 9(3): 34026-15.
DOI URL |
[19] |
WANG Z L. Progress in piezotronics and piezo-phototronics. Advanced Materials, 2012, 24(34): 4632-4646.
DOI URL |
[20] | PANDEY R K, DUTTA J, BRAHMA S, et al. Review on ZnO- based piezotronics and piezoelectric nanogenerators: aspects of pie-zopotential and screening effect. Journal of Physics: Materials, 2021, 4: 44011-22. |
[21] |
GHASEMIAN M B, DAENEKE T, SHAHRBABAKI Z, et al. Peculiar piezoelectricity of atomically thin planar structures. Nanoscale, 2020, 12(5): 2875-2901.
DOI PMID |
[22] |
HINCHET R, KHAN U, FALCONI C, et al. Piezoelectric properties in two-dimensional materials: simulations and experiments. Materials Today, 2018, 21(6): 611-630.
DOI URL |
[23] | WU J M. Piezo-catalytic effect on the enhancement of the ultra- high degradation activity in the dark by single- and few-layers MoS2 nanoflowers. Advanced Matericals, 2016, 28(19): 3718-3725. |
[24] | WANG Z L, WILLATZEN M. Prediction of strong piezoelectricity in 3R-MoS2 multilayer structures. Nano Energy, 2019, 56: 512-515. |
[25] |
UM W, E K P K, LEE J, et al. Recent advances in nanomaterial- based augmented sonodynamic therapy of cancer. Chemical Communications, 2021, 57(23): 2854-2866.
DOI URL |
[26] |
XU H, SUSLICK K S. Molecular emission and temperature meas- urements from single-bubble sonoluminescence. Physical Review Letters, 2010, 104(24): 244301-4.
DOI URL |
[27] |
DIDENKO Y T, SUSLICK K S. The energy efficiency of formation of photons, radicals and ions during single-bubble cavitation. Nature, 2002, 418(6896): 394-397.
DOI URL |
[28] |
NOSAKA Y, NOSAKA A Y. Generation and detection of reactive oxygen species in photocatalysis. Chemical Reviews, 2017, 117(17): 11302-11336.
DOI PMID |
[29] |
LI Y, XIE J, UM W, et al. Sono/photodynamic nanomedicine-elicited cancer immunotherapy. Advanced Functional Materials, 2021, 31(12): 2008061-25.
DOI URL |
[30] | CURIE J, CURIE P. Développement par compression de l’électricité polaire dans les cristaux hémièdres à faces inclinées. Bulletin de la Société Chimique de France, 1880, 91: 294-295. |
[31] |
WU J, MAO W, WU Z, et al. Strong pyro-catalysis of pyroelectric BiFeO3 nanoparticles under a room-temperature cold-hot alternation. Nanoscale, 2016, 8(13): 7343-7350.
DOI URL |
[32] |
WANG Y, WEN X, JIA Y, et al. Piezo-catalysis for nondestructive tooth whitening. Nature Communications, 2020, 11(1): 1328-11.
DOI PMID |
[33] |
WANG Z L. Piezopotential gated nanowire devices: piezotronics and piezo-phototronics. Nano Today, 2010, 5(6): 540-552.
DOI URL |
[34] |
PAN L, SUN S, CHEN Y, et al. Advances in piezo-phototronic effect enhanced photocatalysis and photoelectrocatalysis. Advanced Energy Materials, 2020, 10(15): 2000214-25.
DOI URL |
[35] |
KANG Y, LEI L, ZHU C, et al. Piezo-photocatalytic effect mediat- ing reactive oxygen species burst for cancer catalytic therapy. Materials Horizons, 2021, 8(8): 2273-2285.
DOI URL |
[36] |
ZHU L, WANG Z L. Progress in piezotronics and piezo-phototronics of quantum materials. Journal of Physics D: Applied Physics, 2019, 52(34): 343001-25.
DOI URL |
[37] | ZHOU Z, YUAN S, WANG J. Theoretical progress on direct z-scheme photocatalysis of two-dimensional heterostructures. Frontiers of Physics, 2021, 16(4): 1-9. |
[38] |
ZHOU P, YU J, JARONIEC M. All-solid-state z-scheme photocata- lytic systems. Advanced Materials, 2014, 26(29): 4920-4935.
DOI URL |
[39] |
LI Z, ZHANG T, FAN F, et al. Piezoelectric materials as sono- dynamic sensitizers to safely ablate tumors: a case study using black phosphorus. Journal of Physical Chemistry Letters, 2020, 11(4): 1228-1238.
DOI URL |
[40] |
ZHU P, CHEN Y, SHI J. Piezocatalytic tumor therapy by ultrasound-triggered and BaTiO3-mediated piezoelectricity. Advanced Materials, 2020, 32(29): 2001976-8.
DOI URL |
[41] |
DONG Y, DONG S, LIU B, et al. 2D piezoelectric Bi2MoO6nano- ribbons for GSH-enhanced sonodynamic therapy. Advanced Materials, 2021, 33(51): 2106838-11.
DOI URL |
[42] |
OUYANG J, DENG L, CHEN W, et al. Two dimensional semicon- ductors for ultrasound-mediated cancer therapy: the case of black phos-phorus nanosheets. Chemical Communications, 2018, 54(23): 2874-2877.
DOI URL |
[43] | LIU Y, WANG Y, ZHEN W, et al. Defect modified zinc oxide with augmenting sonodynamic reactive oxygen species generation. Biomaterials, 2020, 251: 120075-9. |
[44] | MASIMUKKU S, HU Y C, LIN Z H, et al. High efficient degradation of dye molecules by PDMS embedded abundant singlelayer tungsten disulfide and their antibacterial performance. Nano Energy, 2018, 46: 338-346. |
[45] |
FENG X, MA L, LEI J, et al. Piezo-augmented sonosensitizer with strong ultrasound-propelling ability for efficient treatment of osteomye-litis. ACS Nano, 2022, 16(2): 2546-2557.
DOI URL |
[46] | WU M, ZHANG Z, LIU Z, et al. Piezoelectric nanocomposites for sonodynamic bacterial elimination and wound healing. Nano Today, 2021, 37: 101104-12. |
[1] | 丁玲, 蒋瑞, 唐子龙, 杨运琼. MXene材料的纳米工程及其作为超级电容器电极材料的研究进展[J]. 无机材料学报, 2023, 38(6): 619-633. |
[2] | 杨卓, 卢勇, 赵庆, 陈军. X射线衍射Rietveld精修及其在锂离子电池正极材料中的应用[J]. 无机材料学报, 2023, 38(6): 589-605. |
[3] | 陈强, 白书欣, 叶益聪. 热管理用高导热碳化硅陶瓷基复合材料研究进展[J]. 无机材料学报, 2023, 38(6): 634-646. |
[4] | 林俊良, 王占杰. 铁电超晶格的研究进展[J]. 无机材料学报, 2023, 38(6): 606-618. |
[5] | 牛嘉雪, 孙思, 柳鹏飞, 张晓东, 穆晓宇. 铜基纳米酶的特性及其生物医学应用[J]. 无机材料学报, 2023, 38(5): 489-502. |
[6] | 苑景坤, 熊书锋, 陈张伟. 聚合物前驱体转化陶瓷增材制造技术研究趋势与挑战[J]. 无机材料学报, 2023, 38(5): 477-488. |
[7] | 杜剑宇, 葛琛. 光电人工突触研究进展[J]. 无机材料学报, 2023, 38(4): 378-386. |
[8] | 杨洋, 崔航源, 祝影, 万昌锦, 万青. 柔性神经形态晶体管研究进展[J]. 无机材料学报, 2023, 38(4): 367-377. |
[9] | 游钧淇, 李策, 杨栋梁, 孙林锋. 氧化物双介质层忆阻器的设计及应用[J]. 无机材料学报, 2023, 38(4): 387-398. |
[10] | 林思琪, 李艾燃, 付晨光, 李荣斌, 金敏. Zintl相Mg3X2(X=Sb, Bi)基晶体生长及热电性能研究进展[J]. 无机材料学报, 2023, 38(3): 270-279. |
[11] | 陈昆峰, 胡乾宇, 刘锋, 薛冬峰. 多尺度晶体材料的原位表征技术与计算模拟研究进展[J]. 无机材料学报, 2023, 38(3): 256-269. |
[12] | 张超逸, 唐慧丽, 李宪珂, 王庆国, 罗平, 吴锋, 张晨波, 薛艳艳, 徐军, 韩建峰, 逯占文. 新型GaN与ZnO衬底ScAlMgO4晶体的研究进展[J]. 无机材料学报, 2023, 38(3): 228-242. |
[13] | 齐占国, 刘磊, 王守志, 王国栋, 俞娇仙, 王忠新, 段秀兰, 徐现刚, 张雷. GaN单晶的HVPE生长与掺杂进展[J]. 无机材料学报, 2023, 38(3): 243-255. |
[14] | 谢兵, 蔡金峡, 王铜铜, 刘智勇, 姜胜林, 张海波. 高储能密度聚合物基多层复合电介质的研究进展[J]. 无机材料学报, 2023, 38(2): 137-147. |
[15] | 刘岩, 张珂颖, 李天宇, 周菠, 刘学建, 黄政仁. 陶瓷材料电场辅助连接技术研究现状及发展趋势[J]. 无机材料学报, 2023, 38(2): 113-124. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||