无机材料学报 ›› 2021, Vol. 36 ›› Issue (10): 1074-1082.DOI: 10.15541/jim20200751 CSTR: 32189.14.10.15541/jim20200751
收稿日期:
2020-12-31
修回日期:
2021-02-26
出版日期:
2021-10-20
网络出版日期:
2021-03-15
通讯作者:
陈 雨, 教授. E-mail: chenyuedu@shu.edu.cn; 朱钰方, 教授. E-mail: zjf2412@163.com
作者简介:
杨 劢(1996-), 女, 硕士研究生. E-mail: yangmai77@163.com
基金资助:
YANG Mai1,3(), ZHU Min1, CHEN Yu2(
), ZHU Yufang1,3(
)
Received:
2020-12-31
Revised:
2021-02-26
Published:
2021-10-20
Online:
2021-03-15
Contact:
CHEN Yu, professor. E-mail: chenyuedu@shu.edu.cn; ZHU Yufang, professor. E-mail: zjf2412@163.com
About author:
YANG Mai(1996-), female, Master candidate. E-mail: yangmai77@163.com
Supported by:
摘要:
光学治疗作为一种肿瘤治疗策略具有微创、毒副作用小、治疗效率高等优势而得到广泛研究, 但单一光学治疗并不能完全消除肿瘤。新兴的二维纳米材料在光学治疗领域的优势引起了广泛关注。本研究探索了金属磷三硫族元素化合物FePS3纳米片的制备及其多功能光学治疗性能。采用高温固相法合成FePS3块体并通过超声协助的液相剥离法得到FePS3纳米片, 该纳米片的平均水合粒径小于200 nm (平均153 nm), 对1064 nm激光的光热转换效率为19.7%, 且能在660 nm激光辐照下产生活性氧。细胞实验结果表明, FePS3纳米片具有良好的光热治疗和光动力学治疗效果。因此, FePS3纳米片可同时作为光热剂和光敏剂获得光热-光动力学联合治疗肿瘤功能, 肿瘤治疗应用潜力较大。
中图分类号:
杨劢, 朱敏, 陈雨, 朱钰方. FePS3纳米片制备及其体外光热-光动力学联合治疗性能研究[J]. 无机材料学报, 2021, 36(10): 1074-1082.
YANG Mai, ZHU Min, CHEN Yu, ZHU Yufang. FePS3 Nanosheets: Preparation and Potential in Photothermal-photodynamic Therapy[J]. Journal of Inorganic Materials, 2021, 36(10): 1074-1082.
图2 FePS3 NSs的透射电镜照片(a), PEG修饰前(b)和修饰后(c)的平均水合粒径及其分散于PBS和DMEM中的照片(插图)
Fig. 2 TEM image (a) of FePS3 nanosheets (NSs) and hydrodynamic size of FePS3 nanosheets (NSs) before (b) and after (c) PEGylation with inset showing the picture of FePS3-PEG dispersed in PBS and in DMEM
图3 FePS3 NSs的 UV-Vis-NIR漫反射光谱和估算的带隙电势(插图)
Fig. 3 UV-Vis-NIR diffuse reflectance spectrum of FePS3 NSs with inset showing the estimated band gap potential
图4 660 nm激光照射下FePS3 NSs与DPBF的混合液(a)和纯DPBF溶液(b)的紫外-可见吸收光谱, 以及不同反应体系的ESR光谱图(c)
Fig. 4 UV-Vis absorption spectra of the mixture solution of FePS3 NSs mixed with DPBF (1,3-diphenylisobenzofuran) (a) and DPBF solution (b) under 660 nm laser irradiation, and ESR spectra of different reaction systems (c)TEMP: a reagent used to detect 1O2. DMPO: a reagent used to detect O2•- and ∙OH
图5 不同浓度FePS3 NSs的可见-近红外吸收光谱图(a), 不同浓度(b)和不同激光功率密度(1064 nm激光)(c)条件下FePS3 NSs随时间的光热升温曲线, 以及FePS3 NSs 5次激光开闭循环辐照的温度曲线(d)
Fig. 5 Vis-NIR spectra of FePS3 NSs with different concentrations (a), photothermal heating curves for different time at different concentrations (b), and different laser power densities (1064 nm laser) (c), and photothermal curve of FePS3 NSs under 5 cycles of laser “on-off” (d)
图6 不同浓度FePS3 NSs 在1064 nm激光照射下随时间升温的红外热成像照片
Fig. 6 Thermal images of different concentrations of FePS3 nanosheets heated by 1064 nm laser irradiation for different time
图7 FePS3 NSs 在λ=1064 nm处的归一化吸收强度除以相应浓度下样品特征长度(A/L)与相应浓度的线性拟合曲线(a), FePS3 NSs经1064 nm激光辐照后冷却过程的-lnθ与时间的线性关系(b), FePS3 NSs在1064 nm激光辐照下的升温和冷却曲线及冷却过程的-lnθ与时间的线性关系(c)
Fig. 7 Linear fitting curve between normalized absorption intensity of FePS3 NSs at λ=1064 nm divided by the characteristic length of the sample at corresponding concentration (A/L) and the corresponding concentration (a), linear relationship between -lnθ and time of cooling process of FePS3 NSs after 1064 nm laser irradiation (b), heating and cooling curves of FePS3 NSs under 1064 nm laser irradiation, and linear relationship between -lnθ and time of the cooling process (c) ε, τs and η represent extinction coefficient, time constant in cooling stage, and photothermal conversion efficiency, respectively, of FePS3 NSs under 1064 nm laser irradiation
图9 与不同浓度FePS3-PEG 共孵育后对4T1细胞进行的体外光动力学治疗(a)和光热治疗(b)
Fig. 9 In vitro photodynamic therapy (a) and photothermal therapy (b) treatment of 4T1 cells after incubation with different concentrations of FePS3-PEG
图10 经不同处理后的4T1细胞活力(a)、ROS产物(b)及线粒体膜电位变化(c)的CLSM荧光照片
Fig. 10 Confocal laser scanning microscope (CLSM) images of 4T1 cell viabilities (a), reactive oxygen species (ROS) production (b) and changes in mitochondrial membrane potential (c) after different treatments Calcein-AM/PI, DCFH-DA and JC-1 represent methods for detecting cell viability, ROS production, and changes in mitochondrial membrane potential, respectively
[1] |
LOVELL J F, LIU T W B, CHEN JUAN, et al. Activatable photosensitizers for imaging and therapy. Chemical Reviews, 2010, 110(5):2839-2857.
DOI URL |
[2] |
CELLI J P, SPRING B Q, RIZVI I, et al. Imaging and photodynamic therapy: mechanisms, monitoring, and optimization. Chemical Reviews, 2010, 110(5):2795-2838.
DOI URL |
[3] |
DOLMANS D E J G J, FUKUMURA D, JAIN R K. Photodynamic therapy for cancer. Nature Reviews Cancer, 2003, 3(5):380-387.
DOI URL |
[4] |
PENG B, ANG P K, LOH K P. Two-dimensional dichalcogenides for light-harvesting applications. Nano Today, 2015, 10(2):128-137.
DOI URL |
[5] |
LI L, KIM J, JIN C, et al. Direct observation of the layer-dependent electronic structure in phosphorene. Nature Nanotechnology, 2016, 12:21-25.
DOI URL |
[6] |
LI XUAN-HUA, ZHU JIN-MENG, WEI BING-QING. Hybrid nanostructures of metal/two-dimensional nanomaterials for plasmon- enhanced applications. Chemical Society Reviews, 2016, 45:3145-3187.
DOI URL |
[7] |
NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696):666-669.
DOI URL |
[8] |
CHHOWALLA M, LIU ZHONG-FAN, ZHANG HUA. Two- dimensional transition metal dichalcogenide (TMD) nanosheets. Chemical Society Reviews, 2015, 44(9):2584-2586.
DOI URL |
[9] |
ALLEN M J, TUNG V C, KANER R B. Honeycomb carbon: a review of graphene. Chemical Reviews, 2009, 110(1):132-145.
DOI URL |
[10] |
NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 2011, 23(37):4248-4253.
DOI URL |
[11] |
LIU HAN, NEAL A T, ZHU ZHEN, et al. Phosphorene: a new 2D material with high carrier mobility. ACS Nano, 2014, 8(4):4033-4041.
DOI URL |
[12] | MANZELI S, OVCHINNIKOV D, PASQUIER D, et al. 2D transition metal dichalcogenides. Nature Reviews Materials, 2017, 2:17033. |
[13] | ZHANG XU, ZHAO XU-DONG, WU DI-HUA, et al. MnPSe3 monolayer: a promising 2D visible-light photohydrolytic catalyst with high carrier mobility. Advanced Science, 2016, 3:1600062. |
[14] | LI XING-XING, WU XIAO-JUN, YANG JIN-LONG. Half-metallicity in MnPSe3 exfoliated nanosheet with carrier doping. Journal of the American Chemical Society, 2014, 136(31):11065-11069. |
[15] |
MUKHERJEE D, AUSTERIA P M, SAMPATH S. Two-dimensional, few-layer phosphochalcogenide, FePS3: a new catalyst for electrochemical hydrogen evolution over wide pH range. ACS Energy Letters, 2016, 1(2):367-372.
DOI URL |
[16] |
DU KE-ZHAO, WANG XING-ZHI, LIU YANG, et al. Weak van der Waals stacking, wide-range band gap, and Raman study on ultrathin layers of metal phosphorus trichalcogenides. ACS Nano, 2015, 10(2):1738-1743.
DOI URL |
[17] | ZHANG QIU-HONG, GUO QIANG-BING, CHEN QIAN, et al. Highly efficient 2D NIR-II photothermal agent with fenton catalytic activity for cancer synergistic photothermal-chemodynamic therapy. Advanced Science, 2020, 7(7):1902576. |
[18] | FANG XUE-YANG, WU XIAN-LIN, LI ZHEN-DONG, et al. Biomimetic anti-PD-1 peptide-loaded 2D FePSe3 nanosheets for efficient photothermal and enhanced immune therapy with multimodal MR/PA/thermal imaging. Advanced Science, 2020, 8(2):2003041. |
[19] |
CHENG LIANG, LIU JING-JING, GU XING, et al. PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy. Advanced Materials, 2014, 26(12):1886-1893.
DOI URL |
[20] | LIN HAN, GAO SHAN-SHAN, DAI CHEN, et al. Two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II bio-windows. Journal of the American Chemical Society, 2017, 139(45):16235-16247. |
[21] |
COLEMAN J N, LOTYA M, O’NEILL A, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science, 2011, 331(6017):568-571.
DOI URL |
[22] |
ZHAO WEI, LI AI-HUA, ZHANG AI-TANG, et al. Recent advances in functional-polymer-decorated transition-metal nanomaterials for bioimaging and cancer therapy. ChemMedChem, 2018, 13(20):2134-2149.
DOI URL |
[23] | ZHANG YONG-CAI, DU ZHEN-NI, LI KUN-WEI, et al. High- performance visible-light-driven SnS/SnO nanocomposite photocatalyst prepared via in situ hydrothermal oxidation of SnS nanoparticles. ACS Applied Materials & Interfaces, 2011, 3(5):1528-1537. |
[24] | CHENG ZHONG-ZHOU, WANG FENG-MEI, SHIFA T A, et al. Efficient photocatalytic hydrogen evolution via band alignment tailoring: controllable transition from type-I to type-II. Small, 2017, 13(41):1702163. |
[25] | CHEN PENG, SU YUN, LIU HONG, et al. Interconnected tin disulfide nanosheets grown on graphene for Li-ion storage and photocatalytic applications. ACS Applied Materials & Interfaces, 2013, 5(22):12073-12082. |
[26] |
DETTY M R, GIBSON S L, WAGNER S J. Current clinical and preclinical photosensitizers for use in photodynamic therapy. Journal of Medicinal Chemistry, 2004, 47(16):3897-3915.
DOI URL |
[27] |
SHARMAN W M, ALLEN C M, VAN LIER J E . Photodynamic therapeutics: basic principles and clinical applications. Drug Discovery Today, 1999, 4(11):507-517.
DOI URL |
[28] | WANG HUI, YANG XIAN-ZHU, SHAO WEI, et al. Ultrathin black phosphorus nanosheets for efficient single oxygen generation. Journal of the American Chemical Society, 2015, 137(35):11376-11382. |
[29] |
LIANG CHEN, ZHANG XING-LIN, YANG MENG-SU, et al. Remodeling tumor microenvironment by multifunctional nanoassemblies for enhanced photodynamic cancer therapy. ACS Materials Letters, 2020, 2(10):1268-1286.
DOI URL |
[30] | DING XIAN-GUANG, LIOW C H, ZHANG MENG-XIN, et al. Surface plasmon resonance enhanced light absorption and photothermal therapy in the second near-infrared window. Journal of the American Chemical Society, 2014, 136(44):15684-15693. |
[31] |
BASHKATOV A N, GENINA E A, KOCHUBEY V I, et al. Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. Journal of Physics D: Applied Physics, 2005, 38(15):2543.
DOI URL |
[32] |
ROBINSON J T, TABAKMAN S M, LIANG YONG-YE, et al. Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. Journal of the American Chemical Society, 2011, 133(17):6825-6831.
DOI URL |
[33] | LI K C, CHU H C, LIN Y, et al. PEGylated copper nanowires as a novel photothermal therapy agent. ACS Applied Materials & Interfaces, 2016, 8(19):12082-12090. |
[34] |
SUN CAI-XIA, WEN LING, ZENG JIAN-FENG, et al. One-pot solventless preparation of PEGylated black phosphorus nanoparticles for photoacoustic imaging and photothermal therapy of cancer. Biomaterials, 2016, 91:81-89.
DOI URL |
[35] |
GIORGIO M, MIGLIACCIO E, ORSINI F, et al. Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell, 2005, 122(2):221-233.
DOI URL |
[36] |
DANIAL N N, KORSMEYER S J. Cell death: critical control points. Cell, 2004, 116(2):205-219.
DOI URL |
[37] | WANG YI, WEI GUO-QING, ZHANG XIAO-BIN, et al. Multistage targeting strategy using magnetic composite nanoparticles for synergism of photothermal therapy and chemotherapy. Small, 2018, 14(12):1702994. |
[1] | 白志强, 赵璐, 白云峰, 冯锋. MXenes的制备、性质及其在肿瘤诊疗中的研究进展[J]. 无机材料学报, 2022, 37(4): 361-375. |
[2] | 王玉伟, 陈佳杰, 田正芳, 朱敏, 朱钰方. 卟啉基金属有机框架负载高铁酸钾: 光-化学动力学联合治疗肿瘤性能研究[J]. 无机材料学报, 2021, 36(12): 1305-1315. |
[3] | 曾雨淋, 陈佳杰, 田正芳, 朱敏, 朱钰方. 介孔有机硅为载体的纳米递送系统制备及其体外化疗-光热联合治疗性能研究[J]. 无机材料学报, 2020, 35(12): 1365-1372. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||