无机材料学报 ›› 2021, Vol. 36 ›› Issue (7): 725-732.DOI: 10.15541/jim20200594 CSTR: 32189.14.10.15541/jim20200594
收稿日期:
2020-10-19
修回日期:
2021-01-27
出版日期:
2021-07-20
网络出版日期:
2021-03-01
作者简介:
李铁(1984-), 男, 副研究员. E-mail:tli2014@sinano.ac.cn
基金资助:
LI Tie1(), LI Yue1, WANG Yingyi2, ZHANG Ting1
Received:
2020-10-19
Revised:
2021-01-27
Published:
2021-07-20
Online:
2021-03-01
About author:
LI Tie(1984-), male, associate professor. E-mail:tli2014@sinano.ac.cn
Supported by:
摘要:
BiFeO3(BFO)是一种新型可回收光响应催化剂, 但较高的光生电子/空穴对复合率和较低的量子产率限制了其实际应用。本研究通过水热法制备出还原氧化石墨烯-BFO(RGO-BFO)纳米晶复合材料, 表征与测试结果表明, 相比于BFO颗粒, 复合材料的禁带宽度Eg为2.0 eV, 降低约10%; 40 min对亚甲基蓝吸附-催化效率接近100%, 远高于BFO颗粒(28%), 这主要由于复合体系中光生电子/空穴对复合率更低。通过本征磁性回收并重复利用6次后, 复合材料仍保持89.1%催化效率, 表现出优异催化性能。
中图分类号:
李铁, 李玥, 王颖异, 张珽. 石墨烯-铁酸铋纳米晶复合材料的制备及其催化性能研究[J]. 无机材料学报, 2021, 36(7): 725-732.
LI Tie, LI Yue, WANG Yingyi, ZHANG Ting. Preparation and Catalytic Properties of Graphene-Bismuth Ferrite Nanocrystal Nanocomposite[J]. Journal of Inorganic Materials, 2021, 36(7): 725-732.
图2 RGO-BFO纳米晶复合材料的形貌和成分分析结果
Fig. 2 Morphology and composition characterizations of RGO-BFO nanocrystal nanocomposite (a) SEM/EDX; (c-d) TEM/SEAD and (e-f) AFM
Sample | SBET/(m2·g-1) | SLangmuir/(m2·g-1) | ST-method/(m2·g-1) | Vpore, HK method/(cm3·g-1) | Dpore, HK method/nm |
---|---|---|---|---|---|
RGO-BFO | 23.124 | 39.536 | 23.1240 | 0.00651 | 0.3675 |
BFO | 4.763 | 7.237 | 1.8463 | 0.15020 | 1.9020 |
表1 RGO-BFO复合体系与BFO的比表面积对比表
Table 1 Comparision of specific surface area between RGO-BFO composite and BFO
Sample | SBET/(m2·g-1) | SLangmuir/(m2·g-1) | ST-method/(m2·g-1) | Vpore, HK method/(cm3·g-1) | Dpore, HK method/nm |
---|---|---|---|---|---|
RGO-BFO | 23.124 | 39.536 | 23.1240 | 0.00651 | 0.3675 |
BFO | 4.763 | 7.237 | 1.8463 | 0.15020 | 1.9020 |
图3 RGO-BFO纳米晶复合材料的结构和组成
Fig. 3 Structure and composition analysis of RGO-BFO nanocrystal nanocomposite (a) XRD patterns; (b) FT-IR spectra; (c) Raman spectra; (d) TG curves; (e-f) XPS peaks
图4 RGO-BFO纳米晶复合材料性质及紫外光催化降解MB性能图
Fig. 4 Physical properties and photocatalytic MB degradation performances of RGO-BFO nanocrystal nanocomposite (a) M-H magnetic curve; (b-c) UV-Vis absorption spectra and calculated result of optical band gap; (d) Absorption spectra of MB solution under various time nodes; (e) Degradation effects of various controlled samples; (f) Cyclic performance of the composite
图5 RGO-BFO纳米晶复合材料光电响应机制
Fig. 5 Photoelectric response mechanism of RGO-BFO nanocrystal nanocomposite (a) Photogenerated currents of the controlled sample; (b) Degradation mechanism of the nanocrystal composite
[1] | 卢鹏, 胡雪利, 赖昕, 等. 铁酸铋的制备及其在光催化领域的研究进展. 应用化工, 2018,6(47):1270-1273. |
[2] |
ILIEV M N, LITVINCHUK A P, LEE H G, et al. Raman spectroscopy of SrRuO3 near the paramagnetic-to-ferromagnetic phase transition. Physical Review B, 1999,59(1):364-369.
DOI URL |
[3] |
ALI S, HUMAYUN M, PI W, et al. Fabrication of BiFeO3-g-C3N4-WO3 Z-scheme heterojunction as highly efficient visible-light photocatalyst for water reduction and 2,4-dichlorophenol degradation: insight mechanism. Journal of Hazardous Materials, 2020,397:122708.
DOI URL |
[4] |
LIU J, NIU M, WANG L, et al. Effect of tuning A/B substitutions on multiferroic characteristics of BiFeO3-based ternary system ceramics. Journal of Magnetism and Magnetic Materials, 2020,510:166928.
DOI URL |
[5] |
ZHAO R, MA N, SONG K, et al. Boosting photocurrent via heating BiFeO3 materials for enhanced self-powered UV photodetectors. Advanced Functional Materials, 2020,30:1906232.
DOI URL |
[6] |
HAUMONT R, KREISEL J, BOUVIER P, et al. Phonon anomalies and the ferroelectric phase transition in multiferroic BiFeO3. Physical Review B, 2006,73(13):132101.
DOI URL |
[7] |
ZOU C, LIU S, SHEN Z, et al. Efficient removal of ammonia with a novel graphene-supported BiFeO3 as a reusable photocatalyst under visible light. Chinese Journal Catalysis, 2017,38(1):20-28.
DOI URL |
[8] |
SI Y, XIA Y, SHANG S, et al. Enhanced visible light driven photocatalytic behavior of BiFeO3/reduced graphene oxide composites. Nanomaterials, 2018,8:526.
DOI URL |
[9] |
GHOSH S, DASGUPTA S, SEN A, et al. Low-temperature synthesis of nanosized bismuth ferrite by soft chemical route. Journal of the American Ceramic Society, 2005,88(5):1349-1952.
DOI URL |
[10] |
KHOMCHENKO V A, SHVARTSMAN V V, BORISOV P, et al. Effect of Gd substitution on the crystal structure and multiferroic properties of BiFeO3. Acta Materialia, 2009,57(17):5137-5145.
DOI URL |
[11] |
KIANI M, RIZWAN S, IRFAN S. Facile synthesis of a BiFeO3/nitrogen-doped graphene nanocomposite system with enhanced photocatalytic activity. Journal of Physics and Chemistry Solids, 2018,121:8-16.
DOI URL |
[12] |
LIN X, SAMIA A C S. Synthesis, assembly and physical properties of magnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 2006,305(1):100-109.
DOI URL |
[13] |
ZHOU Q, LIN Y, ZHANG K, et al. Reduced graphene oxide/BiFeO3 nanohybrids-based signal-on photoelectrochemical sensing system for prostate-specific antigen detection coupling with magnetic microfluidic device. Biosensors and Bioelectronics, 2018,101:146-152.
DOI URL |
[14] |
LATTUADA M, HATTON T A. Preparation and controlled self-assembly of Janus magnetic nanoparticles. Journal of the American Chemical Society, 2007,129(42):12878-12889.
DOI URL |
[15] |
CHENZ, WANG Y, ZHENG D, et al. Polarization tunable and enhanced photovoltaic properties in tetragonal-like BiFeO3 epitaxial films with graphene top electrode. Journal of Alloys and Compounds, 2019,811:152013.
DOI URL |
[16] | 胡玉林, 李永进, 谢燕春, 等. 掺Ni铁酸铋纳米粉的制备及光催化性能. 材料导报(B), 2020,34(9):18009-18013. |
[17] | SEUNG W L, CHUL S K. Growth of multiferroics BiFeO3 thin films by Sol-Gel method. Journal of Magnetism and Magnetic Materials, 2006,304(12):772-774. |
[18] |
IRFAN S, LIANG G, LI F, et al. Effect of graphene oxide nano-sheets on structural, morphological and photocatalytic activity ofBiFeO3-based nanostructures. Nanomaterials, 2019,9(9):1337.
DOI URL |
[19] | PARK T J, MAO Y B, STANISLAUS S. Synthesis and characterization of multiferroic BiFeO3 nanotubes. Chemical Communications, 2004,12(23):2708-2709. |
[20] |
SHEN J, HU Y, QIN C, et al. Layer-by-layer self-assembly of multiwalled carbon nanotube polyelectrolytes prepared by in situ radical polymerization. Langmuir, 2008,24(8):3993-3997.
DOI URL |
[21] |
KIANIM, KIANI A B, KHAN S A, et al. Facile synthesis of Gd and Sn co-doped BiFeO3 supported on nitrogen doped graphene for enhanced photocatalytic activity. Journal of Physics and Chemistry of Solids, 2019,130:222-229.
DOI URL |
[22] |
CARUSO F, LICHTENFELD H, DONATH E, et al. Investigation of electrostatic interactions in polyelectrolyte multilayer films: binding of anionic fluorescent probes to layers assembled onto colloids. Macromolecules, 1999,32(7):2317-2328.
DOI URL |
[23] |
LIU T, XU Y B, FENG S S, et al. A facile route to the synthesis of BiFeO3 at low temperature. Journal of the American Ceramic Society, 2011,94(9):3060-3063.
DOI URL |
[24] |
ZHANG S X, WANG L, GAO Z S. Ferromagnetism in sub-micron scale BiFeO3. Materials Letters. 2011,65(21/22):3309-3312.
DOI URL |
[25] |
REN Y, NAN F, YOU L, et al. Enhanced photoelectrochemical performance in reducedgraphene oxide/BiFeO3 heterostructures. Small, 2017,13(16):1603457.
DOI URL |
[26] |
MKHOYAN K A, CONTRYMAN A W, SILCOX J, et al. Atomic and electronic structure of graphene-oxide. Nano Letters, 2009,9(3):1058-1063
DOI URL |
[27] |
MOITRA D, GHOSH B K, CHANDEL M, et al. Synthesis of a BiFeO3 nanowire-reduced graphene oxide based magnetically separable nanocatalyst and its versatile catalytic activity towards multiple organic reactions. RSC Advances, 2016,6:97941.
DOI URL |
[28] |
EDA G, CHHOWALLA M. Graphene-based composite thin films for electronics. Nano Letters, 2009,9(2):814-818.
DOI URL |
[29] |
BLAKE P, BRIMICOMBE P D, NAIR R R, et al. Graphene-based liquid crystal device. Nano Letters, 2008,8(6):1704-1708.
DOI URL |
[30] |
LI Z, SHEN Y, GUAN Y, et al. Bandgap engineering and enhanced interface coupling of graphene-BiFeO3 nanocomposites as efficient photocatalysts under visible light. Journal of Materials Chemistry A, 2014,2:1967-1973.
DOI URL |
[1] | 李红兰, 张俊苗, 宋二红, 杨兴林. Mo/S共掺杂的石墨烯用于合成氨: 密度泛函理论研究[J]. 无机材料学报, 2024, 39(5): 561-568. |
[2] | 孙川, 何鹏飞, 胡振峰, 王荣, 邢悦, 张志彬, 李竞龙, 万春磊, 梁秀兵. 含有石墨烯阵列的SiC基陶瓷材料的制备与力学性能[J]. 无机材料学报, 2024, 39(3): 267-273. |
[3] | 叶茂森, 王耀, 许冰, 王康康, 张胜楠, 冯建情. II/Z型Bi2MoO6/Ag2O/Bi2O3异质结可见光催化降解四环素[J]. 无机材料学报, 2024, 39(3): 321-329. |
[4] | 戴乐, 刘洋, 高轩, 王书豪, 宋雅婷, 唐明猛, 刘丽莎, 汪尧进. 浓度梯度掺杂实现BiFeO3薄膜自极化[J]. 无机材料学报, 2024, 39(1): 99-106. |
[5] | 王艳莉, 钱心怡, 沈春银, 詹亮. 石墨烯基介孔锰铈氧化物催化剂: 制备和低温催化还原NO[J]. 无机材料学报, 2024, 39(1): 81-89. |
[6] | 杨平军, 李铁虎, 李昊, 党阿磊. 石墨烯对环氧树脂泡沫炭石墨化、电导率和力学性能的影响[J]. 无机材料学报, 2024, 39(1): 107-112. |
[7] | 董怡曼, 谭占鳌. 宽带隙钙钛矿基二端叠层太阳电池复合层的研究进展[J]. 无机材料学报, 2023, 38(9): 1031-1043. |
[8] | 樊家顺, 夏冬林, 刘保顺. 温度相关的CsPbBr3纳米晶瞬态光电导响应研究[J]. 无机材料学报, 2023, 38(8): 893-900. |
[9] | 陈赛赛, 庞雅莉, 王娇娜, 龚䶮, 王锐, 栾筱婉, 李昕. 绿-黄可逆电热致变色织物的制备及其性能[J]. 无机材料学报, 2022, 37(9): 954-960. |
[10] | 赵玉垚, 欧阳俊. 硅片上集成高介电调谐率的柱状纳米晶BaTiO3铁电薄膜[J]. 无机材料学报, 2022, 37(6): 596-602. |
[11] | 孙铭, 邵溥真, 孙凯, 黄建华, 张强, 修子扬, 肖海英, 武高辉. RGO/Al复合材料界面性质第一性原理研究[J]. 无机材料学报, 2022, 37(6): 651-659. |
[12] | 安琳, 吴淏, 韩鑫, 李耀刚, 王宏志, 张青红. 非贵金属Co5.47N/N-rGO助催化剂增强TiO2光催化制氢性能[J]. 无机材料学报, 2022, 37(5): 534-540. |
[13] | 王虹力, 王男, 王丽莹, 宋二红, 赵占奎. 功能化石墨烯担载型AuPd纳米催化剂增强甲酸制氢反应[J]. 无机材料学报, 2022, 37(5): 547-553. |
[14] | 张国庆, 秦鹏, 黄富强. 空间限域铅离子与钙钛矿纳米晶间的可逆转换与信息存储应用[J]. 无机材料学报, 2022, 37(4): 445-451. |
[15] | 董淑蕊, 赵笛, 赵静, 金万勤. 离子化氨基酸对氧化石墨烯膜渗透汽化过程中水选择性渗透的影响[J]. 无机材料学报, 2022, 37(4): 387-394. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||