无机材料学报 ›› 2020, Vol. 35 ›› Issue (10): 1123-1129.DOI: 10.15541/jim20190642 CSTR: 32189.14.10.15541/jim20190642
所属专题: 功能材料论文精选(二):发光材料(2020)
收稿日期:
2019-12-18
修回日期:
2020-02-02
出版日期:
2020-10-20
网络出版日期:
2020-03-06
作者简介:
刘明珠(1993-), 女, 硕士研究生. E-mail: mingzhu@163.com.
基金资助:
LIU Mingzhu1,2(),NIU Chuanwen1,2,ZHANG Huanhuan3,XING Yanjun1,2(
)
Received:
2019-12-18
Revised:
2020-02-02
Published:
2020-10-20
Online:
2020-03-06
About author:
LIU Mingzhu (1993-), female, Master candidate. E-mail: mingzhu@163.com
Supported by:
摘要:
采用常温原位一步法, 以Cd为金属离子, 间苯二甲酸和苯并咪唑为配体制备Cd基发光金属有机骨架(MOF)材料, 然后分别与钙黄绿素(CA)、罗丹明B(RhB)、结晶紫(CV)组装得到一系列荧光可调的MOF/CA、MOF/CA+RhB、MOF/CA+CV和MOF/CA+RhB+CV四种复合材料。探讨了染料初始添加量、比例对MOF/染料复合材料荧光性能的影响。结果表明, 随CA添加量的增加, 四种复合材料中CA特征荧光强度先增后减, 且呈现红移。添加量不变的RhB或CV荧光峰位置虽保持不变, 但荧光强度随CA量的增加而增强, 表明MOF和染料间存在能量转移。以Cd-MOF为平台, 通过调控三种染料摩尔配比制备得到具有白荧光的MOF/CA3+RhB+CV复合材料, 其色度坐标为(0.335, 0.321), 与理论白光坐标(0.333, 0.333)接近。
中图分类号:
刘明珠, 牛传文, 张欢欢, 邢彦军. 基于镉的MOF/染料复合材料的制备及荧光性能研究[J]. 无机材料学报, 2020, 35(10): 1123-1129.
LIU Mingzhu, NIU Chuanwen, ZHANG Huanhuan, XING Yanjun. Preparation and Luminescence Properties of Cd-based MOF/Dye Composites[J]. Journal of Inorganic Materials, 2020, 35(10): 1123-1129.
Sample | CA addition (mol/1×10-3mol Cd2+) | Addition ratio | ||
---|---|---|---|---|
CA/RhB | CA/CV | |||
MOF/CA | MOF/CA-1 | 1.25×10-7 | - | - |
MOF/CA-2 | 2.50×10-7 | - | - | |
MOF/CA-3(MOF/CA10) | 5.00×10-7 | - | - | |
MOF/CA-4 | 1.00×10-6 | - | - | |
MOF/CA-5 | 2.00×10-6 | - | - | |
MOF/CA+RhB | MOF/CA5+RhB | 2.5×10-7 | 5 : 1 | - |
MOF/CA10+RhB | 5.0×10-7 | 10 : 1 | - | |
MOF/CA20+RhB | 1.0×10-6 | 20 : 1 | - | |
MOF/CA+CV | MOF/CA5+CV | 2.5×10-7 | - | 5 : 1 |
MOF/CA10+CV | 5.0×10-7 | - | 10 : 1 | |
MOF/CA20+CV | 1.0×10-6 | - | 20 : 1 | |
MOF/CA+RhB+CV | MOF/CA1+RhB+CV | 5.0×10-8 | 1 : 1 | 1 : 1 |
MOF/CA3+RhB+CV | 1.5×10-7 | 3 : 1 | 3 : 1 | |
MOF/CA5+RhB+CV | 1.5×10-7 | 5 : 1 | 5 : 1 | |
MOF/CA10+RhB+CV | 5.0×10-7 | 10 : 1 | 10 : 1 | |
MOF/CA20+RhB+CV | 1.0×10-6 | 20 : 1 | 20 : 1 |
表1 样品编号及染料添加量
Table 1 Sample abbreviation and dye addition amount
Sample | CA addition (mol/1×10-3mol Cd2+) | Addition ratio | ||
---|---|---|---|---|
CA/RhB | CA/CV | |||
MOF/CA | MOF/CA-1 | 1.25×10-7 | - | - |
MOF/CA-2 | 2.50×10-7 | - | - | |
MOF/CA-3(MOF/CA10) | 5.00×10-7 | - | - | |
MOF/CA-4 | 1.00×10-6 | - | - | |
MOF/CA-5 | 2.00×10-6 | - | - | |
MOF/CA+RhB | MOF/CA5+RhB | 2.5×10-7 | 5 : 1 | - |
MOF/CA10+RhB | 5.0×10-7 | 10 : 1 | - | |
MOF/CA20+RhB | 1.0×10-6 | 20 : 1 | - | |
MOF/CA+CV | MOF/CA5+CV | 2.5×10-7 | - | 5 : 1 |
MOF/CA10+CV | 5.0×10-7 | - | 10 : 1 | |
MOF/CA20+CV | 1.0×10-6 | - | 20 : 1 | |
MOF/CA+RhB+CV | MOF/CA1+RhB+CV | 5.0×10-8 | 1 : 1 | 1 : 1 |
MOF/CA3+RhB+CV | 1.5×10-7 | 3 : 1 | 3 : 1 | |
MOF/CA5+RhB+CV | 1.5×10-7 | 5 : 1 | 5 : 1 | |
MOF/CA10+RhB+CV | 5.0×10-7 | 10 : 1 | 10 : 1 | |
MOF/CA20+RhB+CV | 1.0×10-6 | 20 : 1 | 20 : 1 |
图4 MOF和MOF/CA的荧光发射图谱(a); CIE色度图(b), 日光和紫外光下光学照片(c)
Fig. 4 Fluorescence emission spectra of MOF and MOF/CA (a); CIE chromaticity diagram (b)( where 1: MOF/CA-1; 2: MOF/CA-2; 3: MOF/CA-3; 4: MOF/CA-4; 5: MOF/CA-5) and optical photos under daylight and UV light at 365 nm (c)
图5 MOF/CA+RhB的荧光发射光谱(a), CIE色度图(b), 日光和365 nm紫外光下的光学照片(c)
Fig. 5 Fluorescence emission spectra of MOF/CA+RhB (a), CIE chromaticity diagram (b) (where 1: MOF/CA5+RhB; 2: MOF/CA10+RhB; 3: MOF/CA20+RhB) and optical photos under sunlight and UV light at 365 nm (c)
图6 MOF/CA+CV的荧光发射光谱(a), CIE色度图(b), 日光和365 nm紫外光下光学照片(c)
Fig. 6 Fluorescence emission spectra of MOF/CA+CV (a), CIE chromaticity diagram (b)(where 4: MOF/CA5+CV; 5: MOF/CA10+CV; 6: MOF/CA20+CV)and optical photos under sunlight and UV light at 365 nm (c)
图7 MOF/CA+RhB+CV的荧光发射光谱(a), CIE色度图(b), 日光和365 nm紫外光下光学照片(c)
Fig. 7 Fluorescence emission spectra of MOF/CA+RhB+CV (a), CIE chromaticity diagram (b), where 7: MOF/CA20+RhB+CV; 8: MOF/CA10+RhB+CV; 9: MOF/CA5+RhB+CV; 10: MOF/CA3+RhB+CV; 11: MOF/CA1+RhB+CV; 1, 2, 3 are CIE chromaticity coordinates of MOF/CV+RhB in Fig. 5(b); 4, 5 and 6 are CIE chromaticity coordinates of MOF/CA+CV in Fig. 6(b), and optical photos under sunlight and UV light at 365 nm (c)
Sample | Changes of intensity of characteristic fluorescence peak R | |||
---|---|---|---|---|
RMOF | RCA | RRhB | RCV | |
MOF/CA1+RhB+CV | 1.00 | 1.00 | 1.00 | 1.00 |
MOF/CA3+RhB+CV | 0.71 | 1.79 | 0.92 | 0.95 |
MOF/CA5+RhB+CV | 0.70 | 2.70 | 1.28 | 1.17 |
MOF/CA10+RhB+CV | 0.52 | 4.31 | 1.69 | 1.38 |
MOF/CA20+RhB+CV | 0.28 | 3.15 | 1.30 | 1.12 |
表2 MOF/CA+RhB+CV中特征荧光峰强度的变化(R)
Table 2 Changes of intensity of characteristic fluorescence peaks(R)in MOF/CA+RhB+CV
Sample | Changes of intensity of characteristic fluorescence peak R | |||
---|---|---|---|---|
RMOF | RCA | RRhB | RCV | |
MOF/CA1+RhB+CV | 1.00 | 1.00 | 1.00 | 1.00 |
MOF/CA3+RhB+CV | 0.71 | 1.79 | 0.92 | 0.95 |
MOF/CA5+RhB+CV | 0.70 | 2.70 | 1.28 | 1.17 |
MOF/CA10+RhB+CV | 0.52 | 4.31 | 1.69 | 1.38 |
MOF/CA20+RhB+CV | 0.28 | 3.15 | 1.30 | 1.12 |
[1] |
MONDAL T, MONDAL S, BOSE S , et al. Pure white light emission from a rare earth-free intrinsic metal-organic framework and its application in a WLED. Journal of Materials Chemistry C, 2018,6(3):614-621.
DOI URL |
[2] |
DING Y, ZHENG J, WANG J , et al. Direct blending of multicolor carbon quantum dots into fluorescent films for white light emitting diodes with an adjustable correlated color temperature. Journal of Materials Chemistry C , 2019,7(6):1502-1509.
DOI URL |
[3] |
YING L, HO C L, WU H , et al. White polymer light-emitting devices for solid-state lighting: materials, devices, and recent progress. Advanced Materials , 2014,26(16):2459-2473.
DOI URL |
[4] |
WANG A, GUO Y, ZHOU Z , et al. Aqueous acid-based synthesis of lead-free tin halide perovskites with near-unity photoluminescence quantum efficiency. Chemical Science , 2019,10(17):4573-4579.
DOI URL PMID |
[5] |
ZHOU Z, LI Q, HAN Y , et al. A highly connected (5,5,18)-c trinodal MOF with a 3D diamondoid inorganic connectivity: tunable luminescence and white-light emission. RSC Advances, 2015,5(118):97831-97835.
DOI URL |
[6] |
WANG A, HOU Y L, KANG F , et al. Rare earth-free composites of carbon dots/metal-organic frameworks as white light emitting phosphors. Journal of Materials Chemistry C, 2019,7(8):2207-2211.
DOI URL |
[7] |
LI H, LIU H B, TAO X M , et al. Novel single component tri-rare-earth emitting MOF for warm white light LEDs. Dalton Transaction, 2018,47(25):8427-8433.
DOI URL |
[8] |
YOUSAF A, ARIF A M, XU N , et al. A triazine-functionalized nanoporous metal-organic framework for the selective adsorption and chromatographic separation of transition metal ions and cationic dyes and white-light emission by Ln 3+ ion encapsulation. Journal of Materials Chemistry C , 2019,7(29):8861-8867.
DOI URL |
[9] |
YIN J, ZHANG G, PENG C , et al. An ultrastable metal-organic material emits efficient and broadband bluish white-light emission for luminescent thermometers. Chemical Communications , 2019,55(12):1702-1705.
DOI URL PMID |
[10] |
CHEN Y, YU B, CUI Y , et al. Core-shell structured cyclodextrin metal-organic frameworks with hierarchical dye encapsulation for tunable light emission. Chemistry of Materials, 2019,31(4):1289-1295.
DOI URL |
[11] |
SAMANTA D, VERMA P, ROY S , et al. Nanovesicular MOF with omniphilic porosity: bimodal functionality for white-light emission and photocatalysis by dye encapsulation. ACS Applied Materials & Interfaces , 2018,10(27):23140-23146.
DOI URL PMID |
[12] |
CUI Y, SONG T, YU J , et al. Dye encapsulated metal-organic framework for warm-white led with high color-rendering index. Advanced Functional Materials , 2015,25(30):4796-4802.
DOI URL |
[13] |
CAI H, LU W, YANG C , et al. Tandem Förster resonance energy transfer induced luminescent ratiometric thermometry in dye-encapsulated biological metal-organic frameworks. Advanced Optical Materials, 2019,7(2):1801149-1801156.
DOI URL |
[14] |
WANG J, ZHANG Y, YU Y , et al. Spectrally flat white light emission based on red-yellow-green-blue dye-loaded metal-organic frameworks. Optical Materials , 2019,89:209-213.
DOI URL |
[15] |
WANG Z, WANG Z, LIN B , et al. Warm-white-light-emitting diode based on a dye-loaded metal-organic framework for fast white-light communication. ACS Applied Materials & Interfaces , 2017,9(40):35253-35259.
DOI URL PMID |
[16] |
LIU J, ZHUANG Y, WANG L , et al. Achieving multicolor long- lived luminescence in dye-encapsulated metal-organic frameworks and its application to anticounterfeiting stamps. ACS Applied Materials & Interfaces , 2018,10(2):1802-1809.
DOI URL PMID |
[17] |
WEN Y, SHENG T, ZHU X , et al. Introduction of red-green-blue fluorescent dyes into a metal-organic framework for tunable white light emission. Advanced Materials , 2017,29(37):1700778.
DOI URL |
[18] | WANG Z, ZHU C Y, MO J T , et al. White-light emission from dual- way photon energy conversion in a dye-encapsulated metal-organic framework. Angewandte Chemie International Edition , 2019,131(29):9854-9859. |
TAO H, LI S, XU M , et al. Fluorospectrophotometric determination of trace amount of cobalt in TCM. PTCA(B. Chem. Anal.), 2013,49(04):413-416. |
[1] | 陈甲, 范依然, 闫文馨, 韩颖超. 聚丙烯酸-钙(铈)纳米团簇荧光探针用于无机磷定量检测研究[J]. 无机材料学报, 2024, 39(9): 1053-1062. |
[2] | 瞿牡静, 张淑兰, 朱梦梦, 丁浩杰, 段嘉欣, 代恒龙, 周国红, 李会利. CsPbBr3@MIL-53纳米复合荧光粉的合成、性能及其白光LEDs应用[J]. 无机材料学报, 2024, 39(9): 1035-1043. |
[3] | 全文心, 余艺平, 方冰, 李伟, 王松. 管状C/SiC复合材料高温空气氧化行为与宏细观建模研究[J]. 无机材料学报, 2024, 39(8): 920-928. |
[4] | 何思哲, 王俊舟, 张勇, 费嘉维, 吴爱民, 陈意峰, 李强, 周晟, 黄昊. 高频低损耗的Fe/亚微米FeNi软磁复合材料[J]. 无机材料学报, 2024, 39(8): 871-878. |
[5] | 孙海洋, 季伟, 王为民, 傅正义. TiB-Ti周期序构复合材料设计、制备及性能研究[J]. 无机材料学报, 2024, 39(6): 662-670. |
[6] | 吴晓晨, 郑瑞晓, 李露, 马浩林, 赵培航, 马朝利. SiCf/SiC陶瓷基复合材料高温环境损伤原位监测研究进展[J]. 无机材料学报, 2024, 39(6): 609-622. |
[7] | 粟毅, 史扬帆, 贾成兰, 迟蓬涛, 高扬, 马青松, 陈思安. 浆料浸渍辅助PIP工艺制备C/HfC-SiC复合材料的微观结构及性能研究[J]. 无机材料学报, 2024, 39(6): 726-732. |
[8] | 赵日达, 汤素芳. 多孔碳陶瓷化改进反应熔渗法制备陶瓷基复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 623-633. |
[9] | 方光武, 谢浩元, 张华军, 高希光, 宋迎东. CMC-EBC损伤耦合机理及一体化设计研究进展[J]. 无机材料学报, 2024, 39(6): 647-661. |
[10] | 张幸红, 王义铭, 程源, 董顺, 胡平. 超高温陶瓷复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 571-590. |
[11] | 李广宇, 岳一凡, 王波, 张程煜, 索涛, 李玉龙. 2D-SiC/SiC复合材料的弹丸冲击损伤及冲击后拉伸性能[J]. 无机材料学报, 2024, 39(5): 494-500. |
[12] | 薛轶凡, 李玮洁, 张中伟, 庞旭, 刘愚. 碳纤维布表面PyC界面相微观结构及均匀性的工艺调控[J]. 无机材料学报, 2024, 39(4): 399-408. |
[13] | 李雷, 程群峰. 高性能MXenes纳米复合材料研究进展[J]. 无机材料学报, 2024, 39(2): 153-161. |
[14] | 刘艳艳, 谢曦, 刘增乾, 张哲峰. MAX相陶瓷增强金属基复合材料: 制备、性能与仿生设计[J]. 无机材料学报, 2024, 39(2): 145-152. |
[15] | 马永杰, 刘永胜, 关康, 曾庆丰. CH4+C2H5OH+Ar体系热解的气相动力学研究[J]. 无机材料学报, 2024, 39(11): 1235-1244. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||